skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast, clash-free RNA conformational morphing using molecular junctions

Journal Article · · Bioinformatics
 [1];  [2];  [3];  [4]
  1. Univ. Paris-Saclay, Palaiseau (France)
  2. Univ. of Erlangen-Nuremberg, Erlangen (Germany)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Stanford Univ., Menlo Park, CA (United States). SLAC National Accelerator Lab.

Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. As a result, despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groups of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Furthermore, our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE
Grant/Contract Number:
AC02-76SF00515
OSTI ID:
1368458
Journal Information:
Bioinformatics, Vol. 33, Issue 14; ISSN 1367-4803
Publisher:
Oxford University PressCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Similar Records

Frustration-guided motion planning reveals conformational transitions in proteins
Journal Article · Wed Jul 12 00:00:00 EDT 2017 · Proteins · OSTI ID:1368458

Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry
Journal Article · Wed Feb 07 00:00:00 EST 2018 · ACS Chemical Biology · OSTI ID:1368458

Model morphing and sequence assignment after molecular replacement
Journal Article · Fri Nov 01 00:00:00 EDT 2013 · Acta Crystallographica. Section D: Biological Crystallography · OSTI ID:1368458