skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Modeling at Los Alamos


This briefing describes some the materials theory, modeling and simulation capability at Los Alamos National Laboratory.

  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Country of Publication:
United States
36 MATERIALS SCIENCE; Material Science

Citation Formats

Kress, Joel David. Materials Modeling at Los Alamos. United States: N. p., 2017. Web. doi:10.2172/1364563.
Kress, Joel David. Materials Modeling at Los Alamos. United States. doi:10.2172/1364563.
Kress, Joel David. 2017. "Materials Modeling at Los Alamos". United States. doi:10.2172/1364563.
title = {Materials Modeling at Los Alamos},
author = {Kress, Joel David},
abstractNote = {This briefing describes some the materials theory, modeling and simulation capability at Los Alamos National Laboratory.},
doi = {10.2172/1364563},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 6

Technical Report:

Save / Share:
  • This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Casting and solidification of molten metals and metal alloys is a critical step in the production of high-quality metal stock and in the fabrication of finished parts. Control of the casting process can be the determining factor in both the quality and cost of the final metal product. Major problems with the quality of cast stock or finished parts can arise because of the difficulty of preventing variations in the alloy content, the generation of porosity or poor surfacemore » finish, and the loss of microstructure controlled strength and toughness resulting from the poor understanding and design of the mold filling and solidification processes. In this project, we sought to develop a new set of applications focused on adding the ability to accurately model solidification and grain growth to casting simulations. We implemented these applications within the Los Alamos Materials Modeling Platform, LAMMP, a graphical-based materials, and materials modeling environment being created at the Computational Testbed for Industry.« less
  • An area of upper/middle Mortandad Canyon on the Los Alamos National Laboratory is modeled in cross-section. UNSAT2, a finite element model (FEM) is used to predict moisture movement. Hydraulic characteristics of the tuff are described by van Genuchten parameters determined from laboratory tests on cores taken from a borehole within the cross-section. Material properties are distributed horizontal planar in space to cover the solution domain with required initial conditions. An estimate of seepage flux from a thin perched alluvial aquifer into the upper surface of the tuff is taken from a lumped parameter model. Moisture redistribution for a ponded boundarymore » condition and a larger flux is investigated. A composite simulation using material properties from two separate coreholes is also evaluated.« less
  • To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignitionmore » points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.« less
  • The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of allmore » waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant succession and environmental disturbance. Aeolian, or wind-driven, sediment transport drives soil erosion, affects biogeochemical cycles, and can lead to the transport of contaminants. Rates of aeolian sediment transport depend in large part on the type, amount, and spatial pattern of vegetation. In particular, the amount of cover from trees and shrubs, which act as roughness elements, alters rates of aeolian sediment transport. The degree to which the understory is disturbed and the associated spacing of bare soil gaps further influence sediment transport rates. Changes in vegetation structure and patterns over periods of years to centuries may have profound impacts on rates of wind-driven transport. For recently disturbed areas, succession is likely to occur through a series of vegetation communities. Area G currently exhibits a mosaic of vegetation cover, with patches of grass and forbs over closed disposal units, and bare ground in heavily used portions of the site. These areas are surrounded by less disturbed regions of shrubland and pinon-juniper woodland; some ponderosa pine forest is also visible in the canyon along the road. The successional trajectory for the disturbed portions of Area G is expected to proceed from grasses and forbs (which would be established during site closure), to shrubs such as chamisa, to a climax community of pinon-juniper woodland. Although unlikely under current conditions, a ponderosa pine forest could develop over the site if the future climate is wetter. In many ecosystems, substantial and often periodic disturbances such as fire or severe drought can rapidly alter vegetation patterns. Such disturbances are likely to increase in the southwestern US where projections call for a warmer and drier climate. With respect to Area G, the 3 most likely disturbance types are surface fire, crown fire, and drought-induced tree mortality. Each type of disturbance has a different frequency or likelihood of occurrence, but all 3 tend to reset the vegetation succession cycle to earlier stages. The Area G performance assessment and composite analysis evaluate the impacts of disposing of radioactive waste over a period of hundreds to thousands of years. An assessment of aeolian sediment transport over this timeframe needs to account for the impacts of changes in vegetation structure and other surface conditions that occur under normal circumstances and as a result of environmental disturbance. Recent aeolian sediment transport studies undertaken in diverse dryland systems on both undisturbed and disturbed lands have yielded a suite of empirical measurements. These studies do not take into account changes in long-term conditions at the sites being investigated. Although studies of dune systems have begun to account for different types of vegetation due to succession and the effects of disturbance under current and projected climate, similar information for drylands that are not dominated by dunes is almost entirely lacking.« less