skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Separate Sensible and Latent Cooling System Using Electrochemical Compressor

Conference ·
OSTI ID:1364307

Separate sensible and latent cooling systems offer superior energy efficiency performance compared to conventional vapor compression air conditioning systems. In this paper we describe an innovative non-vapor compression system that uses electrochemical compressor (ECC) to pump hydrogen between 2-metal hydride reservoirs to provide the sensible cooling effect. The heat rejected during this process is used to regenerate the ionic liquid (IL) used for desiccant dehumidification. The overall system design is illustrated. The Xergy version 4C electrochemical compressor, while not designed as a high pressure system, develops in excess of 2 MPa (300 psia) and pressure ratios > 30. The projected base efficiency improvement of the electrochemical compressor is expected to be ~ 20% with higher efficiency when in low capacity mode due to being throttleable to lower capacity with improved efficiency. The IL was tailored to maximize the absorption/desorption rate of water vapor at moderate regeneration temperature. This IL, namely, [EMIm].OAc, is a hydrophilic IL with a working concentration range of 28.98% when operating between 25 75 C. The ECC metal hydride system is expected to show superior performance to typical vapor compression systems. As such, the combined efficiency gains from the use of ECC and separate and sensible cooling would offer significant potential savings to existing vapor compression cooling technology. A high efficiency Window Air Conditioner system is described based on this novel configuration. The system s schematic is provided. Models compared well with actual operating data obtained by running the prototype system. Finally, a model of an LiCl desiccant system in conjunction with the ECC-based metal hydride heat exchangers is provided.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Building Technologies Research and Integration Center (BTRIC)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1364307
Resource Relation:
Conference: 12th IEA Heat Pump Conference, Rotterdam, Netherlands, 20170515, 20170518
Country of Publication:
United States
Language:
English