EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS
- ORNL
Creep Strength Enhanced Ferritic Steels (CSEF) such as Gr. 91, 911, 92, and 122 require a fully martensitic structure for optimum properties, mainly good creep strength. However, broad chemical compositional ranges are specified for these steel grades which can strongly influence the microstructures obtained. In this study, we have produced chemical compositions within the specification ranges for these alloys which intentionally cause the formation of ferrite or substantially alter the lower intercritical temperatures (A1) so as to affect the phase transformation behavior during tempering. Thermodynamic modeling, thermo-mechanical simulation, tensile testing, creep testing, and microstructural analysis were used to evaluate these materials. The results show the usefulness of thermodynamic calculations for setting rational chemical composition ranges for CSEF steels to control the critical temperatures, set heat-treatment temperature limits, and eliminate the formation of ferrite.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- FE USDOE - Office of Fossil Energy (FE)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1364245
- Country of Publication:
- United States
- Language:
- English
Similar Records
Type IV failure in weldment of creep resistant ferritic alloys: I. Micromechanical origin of creep strain localization in the heat affected zone