skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach

Abstract

Here, the alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium–tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertion into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn 3). Following this, NaSn 2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn 3, but has no tin atoms between the layers. NaSn 2 is broken down into an amorphous phase of approximate composition Na 1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reactionmore » with sodium results in the formation of structures containing Sn–Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na 5–xSn 2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na 15Sn 4, can store additional sodium atoms as an off-stoichiometry compound (Na 15+xSn 4) in a manner similar to Li 15Si 4.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [1];  [3];  [3];  [3];  [4];  [1]; ORCiD logo [1]
  1. Univ. of Cambridge, Cambridge (United Kingdom)
  2. Univ. of Cambridge, Cambridge (United Kingdom); Gonville and Caius College, Cambridge (United Kingdom); Diamond Light Source Ltd., Didcot (United Kingdom)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Univ. of Cambridge, Cambridge (United Kingdom); Tohoku Univ., Sendai (Japan)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1364066
Alternate Identifier(s):
OSTI ID: 1374423
Grant/Contract Number:
AC02-06CH11357; AC02-05CH11231
Resource Type:
Journal Article: Published Article
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 21; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Stratford, Joshua M., Mayo, Martin, Allan, Phoebe K., Pecher, Oliver, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chapman, Karena W., Pickard, Chris J., Morris, Andrew J., and Grey, Clare P. Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach. United States: N. p., 2017. Web. doi:10.1021/jacs.7b01398.
Stratford, Joshua M., Mayo, Martin, Allan, Phoebe K., Pecher, Oliver, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chapman, Karena W., Pickard, Chris J., Morris, Andrew J., & Grey, Clare P. Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach. United States. doi:10.1021/jacs.7b01398.
Stratford, Joshua M., Mayo, Martin, Allan, Phoebe K., Pecher, Oliver, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chapman, Karena W., Pickard, Chris J., Morris, Andrew J., and Grey, Clare P. Thu . "Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach". United States. doi:10.1021/jacs.7b01398.
@article{osti_1364066,
title = {Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach},
author = {Stratford, Joshua M. and Mayo, Martin and Allan, Phoebe K. and Pecher, Oliver and Borkiewicz, Olaf J. and Wiaderek, Kamila M. and Chapman, Karena W. and Pickard, Chris J. and Morris, Andrew J. and Grey, Clare P.},
abstractNote = {Here, the alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium–tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertion into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn3). Following this, NaSn2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn3, but has no tin atoms between the layers. NaSn2 is broken down into an amorphous phase of approximate composition Na1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn–Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na5–xSn2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na15Sn4, can store additional sodium atoms as an off-stoichiometry compound (Na15+xSn4) in a manner similar to Li15Si4.},
doi = {10.1021/jacs.7b01398},
journal = {Journal of the American Chemical Society},
number = 21,
volume = 139,
place = {United States},
year = {Thu May 04 00:00:00 EDT 2017},
month = {Thu May 04 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1021/jacs.7b01398

Citation Metrics:
Cited by: 6works
Citation information provided by
Web of Science

Save / Share:
  • Here, the alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium–tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertionmore » into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn 3). Following this, NaSn 2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn 3, but has no tin atoms between the layers. NaSn 2 is broken down into an amorphous phase of approximate composition Na 1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn–Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na 5–xSn 2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na 15Sn 4, can store additional sodium atoms as an off-stoichiometry compound (Na 15+xSn 4) in a manner similar to Li 15Si 4.« less
  • Operando pair distribution function (PDF) analysis and ex situ Na-23 magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from Na-23 ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electro-chemically; a-Na3-xSb (x approximate to 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, amore » highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3-xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphofis network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3-xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3-xSb without the formation of a-Na3-xSb. a-Na3-xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature Na-23 NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less
  • We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na xSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na 3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na 3Sb (c-Na 3Sb) but with significant numbers of sodium vacancies and a limited correlation length,more » and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na 3–xSb and, finally, crystalline Na 3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na 1.7Sb, then a-Na 3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na 3–xSb without the formation of a-Na 1.7Sb. a-Na 3–xSb is converted to crystalline Na 3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na 3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less
    Cited by 29
  • We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na xSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na 3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na 3Sb (c-Na 3Sb) but with significant numbers of sodium vacancies and a limited correlation length,more » and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na 3–xSb and, finally, crystalline Na 3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na 1.7Sb, then a-Na 3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na 3–xSb without the formation of a-Na 1.7Sb. a-Na 3–xSb is converted to crystalline Na 3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na 3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less
  • Lanthanum tungstate (La 28–xW 4+xO 54+δ) is a good proton conductor and exhibits a complex fluorite-type structure. To gain further understanding of the short-range order in the structure we correlate the optimized configurations obtained by density functional theory (DFT) with the experimental atomic pair distribution function analysis (PDF) of time-of-flight neutron and synchrotron X-ray data, collected at room temperature. The local atomic arrangements cannot be described by means of any average symmetric structure. Tungsten forms WO 6 octahedra in alternating directions, La1 is mainly 8-fold coordinated in relatively symmetric cubes, and La2 is coordinated with 6 or 7 oxygens inmore » heavily distorted cubes. Both DFT and PDF confirm that the excess tungsten (x) is incorporated in La2 (1/4, 1/4, 1/4) sites in the La 27W 5O 55.5 composition. This additional tungsten can be considered as a donor self-dopant in the material and has implications to the conducting properties and the defect structure.« less