skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Novel Porous Sorbents for Extraction of Uranium from Seawater

Abstract

Climate disruption is one of the greatest crises the global community faces in the 21st century. Alarming increases in CO 2, NO, SO 2 and particulate matter levels will have catastrophic consequences on the environment, food supplies, and human health if no action is taken to lessen their worldwide prevalence. Nuclear energy remains the only mature technology capable of continuous base-load power generation with ultralow carbon dioxide, nitric oxide, and sulfur dioxide emissions. Over the lifetime of the technology, nuclear energy outputs less than 1.5% the carbon dioxide emissions per gigawatt hour relative to coal—about as much as onshore wind power.1 However, in order for nuclear energy to be considered a viable option in the future, a stable supply of uranium must be secured. Current estimates suggest there is less than 100 years’ worth of uranium left in terrestrial ores (6.3 million tons) if current consumption levels remain unchanged.2 It is likely, however, that demand for nuclear fuel will rise as a direct consequence of the ratification of global climate accords. The oceans, containing approximately 4.5 billion tons of uranium (U) at a uniform concentration of ~3 ppb, represent a virtually limitless supply of this resource.3 Development of technologies tomore » recover uranium from seawater would greatly improve the U resource availability, providing a U price ceiling for the current generation and sustaining the nuclear fuel supply for future generations. Several methods have been previously evaluated for uranium sequestration including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons including cost effectiveness, long term stability, and selectivity.4,5 While polymer beads and fibers have been functionalized with amidoxime functional groups to afford U adsorption capacities as high as 1.5 g U/kg,6 further discoveries are needed to make uranium extraction from seawater economically feasible.« less

Authors:
 [1]
  1. Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Univ. of Chicago, IL (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE). Nuclear Energy University Programs (NEUP)
OSTI Identifier:
1363745
Report Number(s):
DOE/NEUP-13-5332
13-5332; TRN: US1702244
DOE Contract Number:
NE0000700
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 54 ENVIRONMENTAL SCIENCES; URANIUM; SEAWATER; NUCLEAR FUELS; NUCLEAR ENERGY; ABUNDANCE

Citation Formats

Lin, Wenbin. Development of Novel Porous Sorbents for Extraction of Uranium from Seawater. United States: N. p., 2017. Web. doi:10.2172/1363745.
Lin, Wenbin. Development of Novel Porous Sorbents for Extraction of Uranium from Seawater. United States. doi:10.2172/1363745.
Lin, Wenbin. Thu . "Development of Novel Porous Sorbents for Extraction of Uranium from Seawater". United States. doi:10.2172/1363745. https://www.osti.gov/servlets/purl/1363745.
@article{osti_1363745,
title = {Development of Novel Porous Sorbents for Extraction of Uranium from Seawater},
author = {Lin, Wenbin},
abstractNote = {Climate disruption is one of the greatest crises the global community faces in the 21st century. Alarming increases in CO2, NO, SO2 and particulate matter levels will have catastrophic consequences on the environment, food supplies, and human health if no action is taken to lessen their worldwide prevalence. Nuclear energy remains the only mature technology capable of continuous base-load power generation with ultralow carbon dioxide, nitric oxide, and sulfur dioxide emissions. Over the lifetime of the technology, nuclear energy outputs less than 1.5% the carbon dioxide emissions per gigawatt hour relative to coal—about as much as onshore wind power.1 However, in order for nuclear energy to be considered a viable option in the future, a stable supply of uranium must be secured. Current estimates suggest there is less than 100 years’ worth of uranium left in terrestrial ores (6.3 million tons) if current consumption levels remain unchanged.2 It is likely, however, that demand for nuclear fuel will rise as a direct consequence of the ratification of global climate accords. The oceans, containing approximately 4.5 billion tons of uranium (U) at a uniform concentration of ~3 ppb, represent a virtually limitless supply of this resource.3 Development of technologies to recover uranium from seawater would greatly improve the U resource availability, providing a U price ceiling for the current generation and sustaining the nuclear fuel supply for future generations. Several methods have been previously evaluated for uranium sequestration including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons including cost effectiveness, long term stability, and selectivity.4,5 While polymer beads and fibers have been functionalized with amidoxime functional groups to afford U adsorption capacities as high as 1.5 g U/kg,6 further discoveries are needed to make uranium extraction from seawater economically feasible.},
doi = {10.2172/1363745},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu May 25 00:00:00 EDT 2017},
month = {Thu May 25 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recentmore » research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.« less
  • A new series of amidoxime-based polymer adsorbents were synthesized at the Oak Ridge National Laboratory (ORNL) by electron beam induced grafting of acrylonitrile and itaconic acid onto polyethylene fiber. Hydroxylamine derivatives of poly(acrylonitrile) (PAN) moiety are demonstrated to possess two kinds of functional groups: open-chain amidoxime and cyclic imide dioxime. The open-chain amidoxime is shown to convert to imide dioxime on heat treatment in the presence of an aprotic solvent, like dimethylsulfoxide (DMSO). The formation of amidoxime and imide dioxime was confirmed by 13-C CPMAS spectra. The adsorbents were evaluated for uranium adsorption efficiency at ORNL with simulated seawater spikedmore » with 8 ppm uranium and 5 gallon seawater in a batch reactor, and in flow-through columns with natural seawater at the Marine Science Laboratory (MSL) of Pacific Northwest National Laboratory (PNNL) at Sequim Bay, WA. The DMSO-heat-treated sorbents adsorbed uranium as high as 4.48 g-U/kg-ads. from seawater. Experimental evidence is presented that the poly(imide dioxime) is primarily responsible for enhanced uranium adsorption capacity from natural seawater. The conjugated system in the imide dioxime ligand possesses increased electron donation ability, which is believed to significantly enhance the uranyl coordination in seawater« less
  • Cited by 20
  • We synthesized a new series of amidoxime-based polymer adsorbents at the Oak Ridge National Laboratory (ORNL) by electron beam induced grafting of acrylonitrile and itaconic acid onto polyethylene fiber. We also demonstrate hydroxylamine derivatives of poly(acrylonitrile) (PAN) moiety to possess two kinds of functional groups: open-chain amidoxime and cyclic imide dioxime. The open-chain amidoxime is shown to convert to imide dioxime on heat treatment in the presence of an aprotic solvent, like dimethylsulfoxide (DMSO). Furthermore, the formation of amidoxime and imide dioxime was confirmed by 13C CP-MAS spectra. The adsorbents were evaluated for uranium adsorption efficiency at ORNL with simulatedmore » seawater spiked with 8 ppm uranium and 5 gallon seawater in a batch reactor, and in flow-through columns with natural seawater at the Marine Science Laboratory (MSL) of Pacific Northwest National Laboratory (PNNL) at Sequim Bay, WA. The DMSO-heat-treated sorbents adsorbed uranium as high as 4.48 g-U/kg-ads. from seawater. Experimental evidence is presented that the poly(imide dioxime) is primarily responsible for enhanced uranium adsorption capacity from natural seawater. The conjugated system in the imide dioxime ligand possesses increased electron donation ability, which is believed to significantly enhance the uranyl coordination in seawater.« less