skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint

Abstract

This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiation temperatures: 800oC, 500oC, and 400oC.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1358506
Report Number(s):
PNNL-SA-124093
AT2030110
DOE Contract Number:
AC05-76RL01830
Resource Type:
Book
Resource Relation:
Related Information: Fusion Materials Semiannual Progress Report For Period Ending December 31, 2016, 61; /DOE/ER-0313/61:58-65
Country of Publication:
United States
Language:
English

Citation Formats

Nguyen, Ba Nghiep, Henager, Charles H., Kurtz, Richard J., Ferraris, M., and Katoh, Yutai. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint. United States: N. p., 2017. Web.
Nguyen, Ba Nghiep, Henager, Charles H., Kurtz, Richard J., Ferraris, M., & Katoh, Yutai. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint. United States.
Nguyen, Ba Nghiep, Henager, Charles H., Kurtz, Richard J., Ferraris, M., and Katoh, Yutai. Fri . "Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint". United States. doi:.
@article{osti_1358506,
title = {Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint},
author = {Nguyen, Ba Nghiep and Henager, Charles H. and Kurtz, Richard J. and Ferraris, M. and Katoh, Yutai},
abstractNote = {This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiation temperatures: 800oC, 500oC, and 400oC.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 31 00:00:00 EDT 2017},
month = {Fri Mar 31 00:00:00 EDT 2017}
}

Book:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share:
  • Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.
  • The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimensmore » when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.« less
  • The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes since SiC and SiC-composites used in fission or fusion environments require joining methods for assembling systems. Torsion specimens fail out-of-plane when joints are strong and when elastic moduli are comparable to SiC, which causes difficulties in determining shear strengths for many joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed to treat elastic joints such as SiC/Ti3SiC2+SiC and elastic-plastic joints such as SiC/epoxy and steel/epoxy. The model uses constitutive shear data and is validatedmore » using epoxy joint data. The elastic model indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. Lower modulus epoxy joints always fail in plane and provide good model validation.« less
  • The use of SiC and SiC-composites in fission or fusion environments appears to require joining methods for assembling systems. The international fusion community has designed miniature torsion specimens for joint testing and for irradiation in HFIR. Therefore, miniature torsion joints were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with CVD-SiC that were tested in shear prior to and after HFIR irradiation. However, these torsion specimens fail out-of-plane, which causes difficulties in determining a shear strength for the joints or for comparing unirradiated and irradiated joints. A finite element damage model has been developedmore » that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The implications for torsion shear joint data based on this sample design are discussed.« less
  • Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.