skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A single-pixel X-ray imager concept and its application to secure radiographic inspections

Abstract

Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. However, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. The method is built on the theory of compressive sensing and the single pixel optical camera. The performance of the system is quantified here using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how such an inspection would be made which can maintain high robustness and security. In particular, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1358477
Report Number(s):
PNNL-SA-122169
Journal ID: ISSN 0168-9002; DN2001000
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment; Journal Volume: 861
Country of Publication:
United States
Language:
English
Subject:
Arms Control; Information Barrier; Compressive Sensing; Imaging

Citation Formats

Gilbert, Andrew J., Miller, Brian W., Robinson, Sean M., White, Timothy A., Pitts, William Karl, Jarman, Kenneth D., and Seifert, Allen. A single-pixel X-ray imager concept and its application to secure radiographic inspections. United States: N. p., 2017. Web. doi:10.1016/j.nima.2017.03.028.
Gilbert, Andrew J., Miller, Brian W., Robinson, Sean M., White, Timothy A., Pitts, William Karl, Jarman, Kenneth D., & Seifert, Allen. A single-pixel X-ray imager concept and its application to secure radiographic inspections. United States. doi:10.1016/j.nima.2017.03.028.
Gilbert, Andrew J., Miller, Brian W., Robinson, Sean M., White, Timothy A., Pitts, William Karl, Jarman, Kenneth D., and Seifert, Allen. Sat . "A single-pixel X-ray imager concept and its application to secure radiographic inspections". United States. doi:10.1016/j.nima.2017.03.028.
@article{osti_1358477,
title = {A single-pixel X-ray imager concept and its application to secure radiographic inspections},
author = {Gilbert, Andrew J. and Miller, Brian W. and Robinson, Sean M. and White, Timothy A. and Pitts, William Karl and Jarman, Kenneth D. and Seifert, Allen},
abstractNote = {Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. However, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. The method is built on the theory of compressive sensing and the single pixel optical camera. The performance of the system is quantified here using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how such an inspection would be made which can maintain high robustness and security. In particular, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.},
doi = {10.1016/j.nima.2017.03.028},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = ,
volume = 861,
place = {United States},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}
  • Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
    Cited by 1
  • Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
    Cited by 1
  • X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less
  • An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel that recovers composite signals and event driven strobes to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32×32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3 μm X-ray beam. The results of these tests are given in the paper assessing physical implementation of the algorithm.« less
  • An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less