skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility

Abstract

When used with 1.06-mm beryllium (Be) capsules on the National Ignition Facility, gold hohlraums with the inner diameter of 5.75 mm and helium gas fill density of 1.6 mg/cm 3 exhibit significant drive degradation due to laser energy backscatter (of order 14%–17%) and “missing” X-ray drive energy (about 32% during the main pulse). Also, hard to simulate cross-beam energy transfer (CBET) must be used to control the implosion symmetry. Larger, 6.72-mm hohlraums with fill densities ≤0.6 mg/cm 3 generally offer improved drive efficiency, reduced hot-electron preheat, and better control of the implosion symmetry without CBET. Recently, we carried out an exploratory campaign to evaluate performance of 1.06-mm Be capsules in such hohlraums and determine optimal hohlraum parameters. Specifically, we performed in this paper a hohlraum fill-density scan with a three-shock, 9.5-ns laser pulse and found that an appropriate axial laser repointing and azimuthal outer-quad splitting resulted in significantly improved hohlraum energetics at fill densities ≤0.3 mg/cm 3 (with backscattered and “missing” energies being of about 5% and 23% of the total laser energy, respectively). The capsule shape at stagnation was slightly oblate and improved with lowering the fill density. We also performed an implosion with a lower-picket, 12.6-ns pulse atmore » the hohlraum fill density of 0.15 mg/cm 3 to observe comparable hohlraum energetics (about 3% of backscattered and 27% of “missing” energy) but an even more oblate implosion shape. Finally, achieving symmetric implosions of 1.06-mm Be capsules in low-fill, 6.72-mm gold hohlraums with reasonably low-adiabat pulses may not be feasible. However, symmetric implosions have recently been successfully demonstrated in such hohlraums with 0.8-mm Be capsules.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [2];  [2];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2];  [2];  [2];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2];  [2] more »; ORCiD logo [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [3];  [3];  [3];  [3]; ORCiD logo [3];  [3];  [3];  [4] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. General Atomics, San Diego, CA (United States)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
Contributing Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
OSTI Identifier:
1357132
Alternate Identifier(s):
OSTI ID: 1361879; OSTI ID: 1374518
Report Number(s):
LA-UR-17-20756; LLNL-JRNL-734711
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
AC52-06NA25396; AC52-07NA27344; NA0001808
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Hohlraum; X-ray imaging; Radiosurgery; Stimulated Brillouin scattering; Implosion symmetry

Citation Formats

Simakov, A. N., Wilson, D. C., Yi, S. A., Loomis, E. N., Kline, J. L., Kyrala, G. A., Zylstra, A. B., Dewald, E. L., Tommasini, R., Ralph, J. E., Strozzi, D. J., MacPhee, A. G., Milovich, J. L., Rygg, J. R., Khan, S. F., Ma, T., Jarrott, L. C., Haan, S. W., Celliers, P. M., Marinak, M. M., Rinderknecht, H. G., Robey, H. F., Salmonson, J. D., Stadermann, M., Baxamusa, S., Alford, C., Wang, Y., Nikroo, A., Rice, N., Kong, C., Jaquez, J., Mauldin, M., Youngblood, K. P., Xu, H., Huang, H., and Sio, H. Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility. United States: N. p., 2017. Web. doi:10.1063/1.4983141.
Simakov, A. N., Wilson, D. C., Yi, S. A., Loomis, E. N., Kline, J. L., Kyrala, G. A., Zylstra, A. B., Dewald, E. L., Tommasini, R., Ralph, J. E., Strozzi, D. J., MacPhee, A. G., Milovich, J. L., Rygg, J. R., Khan, S. F., Ma, T., Jarrott, L. C., Haan, S. W., Celliers, P. M., Marinak, M. M., Rinderknecht, H. G., Robey, H. F., Salmonson, J. D., Stadermann, M., Baxamusa, S., Alford, C., Wang, Y., Nikroo, A., Rice, N., Kong, C., Jaquez, J., Mauldin, M., Youngblood, K. P., Xu, H., Huang, H., & Sio, H. Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility. United States. doi:10.1063/1.4983141.
Simakov, A. N., Wilson, D. C., Yi, S. A., Loomis, E. N., Kline, J. L., Kyrala, G. A., Zylstra, A. B., Dewald, E. L., Tommasini, R., Ralph, J. E., Strozzi, D. J., MacPhee, A. G., Milovich, J. L., Rygg, J. R., Khan, S. F., Ma, T., Jarrott, L. C., Haan, S. W., Celliers, P. M., Marinak, M. M., Rinderknecht, H. G., Robey, H. F., Salmonson, J. D., Stadermann, M., Baxamusa, S., Alford, C., Wang, Y., Nikroo, A., Rice, N., Kong, C., Jaquez, J., Mauldin, M., Youngblood, K. P., Xu, H., Huang, H., and Sio, H. Wed . "Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility". United States. doi:10.1063/1.4983141. https://www.osti.gov/servlets/purl/1357132.
@article{osti_1357132,
title = {Performance of beryllium targets with full-scale capsules in low-fill 6.72-mm hohlraums on the National Ignition Facility},
author = {Simakov, A. N. and Wilson, D. C. and Yi, S. A. and Loomis, E. N. and Kline, J. L. and Kyrala, G. A. and Zylstra, A. B. and Dewald, E. L. and Tommasini, R. and Ralph, J. E. and Strozzi, D. J. and MacPhee, A. G. and Milovich, J. L. and Rygg, J. R. and Khan, S. F. and Ma, T. and Jarrott, L. C. and Haan, S. W. and Celliers, P. M. and Marinak, M. M. and Rinderknecht, H. G. and Robey, H. F. and Salmonson, J. D. and Stadermann, M. and Baxamusa, S. and Alford, C. and Wang, Y. and Nikroo, A. and Rice, N. and Kong, C. and Jaquez, J. and Mauldin, M. and Youngblood, K. P. and Xu, H. and Huang, H. and Sio, H.},
abstractNote = {When used with 1.06-mm beryllium (Be) capsules on the National Ignition Facility, gold hohlraums with the inner diameter of 5.75 mm and helium gas fill density of 1.6 mg/cm3 exhibit significant drive degradation due to laser energy backscatter (of order 14%–17%) and “missing” X-ray drive energy (about 32% during the main pulse). Also, hard to simulate cross-beam energy transfer (CBET) must be used to control the implosion symmetry. Larger, 6.72-mm hohlraums with fill densities ≤0.6 mg/cm3 generally offer improved drive efficiency, reduced hot-electron preheat, and better control of the implosion symmetry without CBET. Recently, we carried out an exploratory campaign to evaluate performance of 1.06-mm Be capsules in such hohlraums and determine optimal hohlraum parameters. Specifically, we performed in this paper a hohlraum fill-density scan with a three-shock, 9.5-ns laser pulse and found that an appropriate axial laser repointing and azimuthal outer-quad splitting resulted in significantly improved hohlraum energetics at fill densities ≤0.3 mg/cm3 (with backscattered and “missing” energies being of about 5% and 23% of the total laser energy, respectively). The capsule shape at stagnation was slightly oblate and improved with lowering the fill density. We also performed an implosion with a lower-picket, 12.6-ns pulse at the hohlraum fill density of 0.15 mg/cm3 to observe comparable hohlraum energetics (about 3% of backscattered and 27% of “missing” energy) but an even more oblate implosion shape. Finally, achieving symmetric implosions of 1.06-mm Be capsules in low-fill, 6.72-mm gold hohlraums with reasonably low-adiabat pulses may not be feasible. However, symmetric implosions have recently been successfully demonstrated in such hohlraums with 0.8-mm Be capsules.},
doi = {10.1063/1.4983141},
journal = {Physics of Plasmas},
issn = {1070-664X},
number = 5,
volume = 24,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility
journal, February 2014

  • Simakov, Andrei N.; Wilson, Douglas C.; Yi, Sunghwan A.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4864331

First beryllium capsule implosions on the National Ignition Facility
journal, May 2016

  • Kline, J. L.; Yi, S. A.; Simakov, A. N.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948277

First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


X-ray ablation rates in inertial confinement fusion capsule materials
journal, March 2011

  • Olson, R. E.; Rochau, G. A.; Landen, O. L.
  • Physics of Plasmas, Vol. 18, Issue 3
  • DOI: 10.1063/1.3566009

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums
journal, January 2010


High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled Hohlraums
journal, February 2010

  • Regan, S. P.; Meezan, N. B.; Suter, L. J.
  • Physics of Plasmas, Vol. 17, Issue 2
  • DOI: 10.1063/1.3309481

Streaked radiography measurements of convergent ablator performance (invited)
journal, October 2010

  • Hicks, D. G.; Spears, B. K.; Braun, D. G.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3475727

Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration
journal, November 2014

  • Amendt, Peter; Ross, J. Steven; Milovich, Jose L.
  • Physics of Plasmas, Vol. 21, Issue 11
  • DOI: 10.1063/1.4901195

The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited)
journal, October 2010

  • Kline, J. L.; Widmann, K.; Warrick, A.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491032

Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility
journal, November 2016


Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

The near vacuum hohlraum campaign at the NIF: A new approach
journal, May 2016

  • Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950843

Dante soft x-ray power diagnostic for National Ignition Facility
journal, October 2004

  • Dewald, E. L.; Campbell, K. M.; Turner, R. E.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788872

Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer
journal, January 2009


2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Symmetry control in subscale near-vacuum hohlraums
journal, May 2016

  • Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950825

Hydrodynamic instabilities in beryllium targets for the National Ignition Facility
journal, September 2014

  • Yi, S. A.; Simakov, A. N.; Wilson, D. C.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4894112

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum
journal, April 2015

  • Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.
  • Physics of Plasmas, Vol. 22, Issue 4
  • DOI: 10.1063/1.4918951

Experimental validation of a diagnostic technique for tuning the fourth shock timing on National Ignition Facility
journal, January 2010

  • Robey, H. F.; Boehly, T. R.; Olson, R. E.
  • Physics of Plasmas, Vol. 17, Issue 1
  • DOI: 10.1063/1.3276154

The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility
journal, May 2017

  • Hall, G. N.; Jones, O. S.; Strozzi, D. J.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983142

The development and advantages of beryllium capsules for the National Ignition Facility
journal, May 1998

  • Wilson, Douglas C.; Bradley, Paul A.; Hoffman, Nelson M.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872865

Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

Measurement of 0.1–3‐keV x rays from laser plasmas
journal, August 1986

  • Kornblum, H. N.; Kauffman, R. L.; Smith, J. A.
  • Review of Scientific Instruments, Vol. 57, Issue 8
  • DOI: 10.1063/1.1138723

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Novel Characterization of Capsule X-Ray Drive at the National Ignition Facility
journal, March 2014