Locality-Aware CTA Clustering For Modern GPUs
In this paper, we proposed a novel clustering technique for tapping into the performance potential of a largely ignored type of locality: inter-CTA locality. We first demonstrated the capability of the existing GPU hardware to exploit such locality, both spatially and temporally, on L1 or L1/Tex unified cache. To verify the potential of this locality, we quantified its existence in a broad spectrum of applications and discussed its sources of origin. Based on these insights, we proposed the concept of CTA-Clustering and its associated software techniques. Finally, We evaluated these techniques on all modern generations of NVIDIA GPU architectures. The experimental results showed that our proposed clustering techniques could significantly improve on-chip cache performance.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-76RL01830
- OSTI ID:
- 1355097
- Report Number(s):
- PNNL-SA-123050; KJ0402000
- Country of Publication:
- United States
- Language:
- English
Similar Records
RACB: Resource Aware Cache Bypass on GPUs
Critical Points Based Register-Concurrency Autotuning for GPUs