skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport

Abstract

Carbonyl sulfide (COS or OCS), the most abundant sulfur containing gas in the troposphere, has recently emerged as a potentially important atmospheric tracer for the carbon cycle. Atmospheric inverse modeling studies may be able to use existing tower, airborne, and satellite observations of COS to infer information about photosynthesis. However, such analysis relies on gridded anthropogenic COS source estimates that are largely based on industry activity data from over three decades ago. Here we use updated emission factor data and industry activity data to develop a gridded inventory with a 0.1 degree resolution for the U.S. domain. The inventory includes the primary anthropogenic COS sources including direct emissions from the coal and aluminum industries as well as indirect sources from industrial carbon disulfide emissions. Compared to the previously published inventory, we found that the total anthropogenic source (direct and indirect) is 47% smaller. Using this new gridded inventory to drive the STEM/WRF atmospheric transport model, we found that the anthropogenic contribution to COS variation in the troposphere is small relative to the biosphere influence, which is encouraging of carbon cycle applications in this region. Additional anthropogenic sectors with highly uncertain emission factors require further field measurements.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Sierra Nevada Research Institute, University of California, Merced California USA
  2. Joint Global Change Research Institute, PNNL, College Park Maryland USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1353340
Report Number(s):
PNNL-SA-125015
Journal ID: ISSN 2169-897X; KP1703020
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Geophysical Research: Atmospheres; Journal Volume: 122; Journal Issue: 4
Country of Publication:
United States
Language:
English

Citation Formats

Zumkehr, Andrew, Hilton, Timothy W., Whelan, Mary, Smith, Steve, and Campbell, J. Elliott. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport. United States: N. p., 2017. Web. doi:10.1002/2016JD025550.
Zumkehr, Andrew, Hilton, Timothy W., Whelan, Mary, Smith, Steve, & Campbell, J. Elliott. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport. United States. doi:10.1002/2016JD025550.
Zumkehr, Andrew, Hilton, Timothy W., Whelan, Mary, Smith, Steve, and Campbell, J. Elliott. Tue . "Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport". United States. doi:10.1002/2016JD025550.
@article{osti_1353340,
title = {Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport},
author = {Zumkehr, Andrew and Hilton, Timothy W. and Whelan, Mary and Smith, Steve and Campbell, J. Elliott},
abstractNote = {Carbonyl sulfide (COS or OCS), the most abundant sulfur containing gas in the troposphere, has recently emerged as a potentially important atmospheric tracer for the carbon cycle. Atmospheric inverse modeling studies may be able to use existing tower, airborne, and satellite observations of COS to infer information about photosynthesis. However, such analysis relies on gridded anthropogenic COS source estimates that are largely based on industry activity data from over three decades ago. Here we use updated emission factor data and industry activity data to develop a gridded inventory with a 0.1 degree resolution for the U.S. domain. The inventory includes the primary anthropogenic COS sources including direct emissions from the coal and aluminum industries as well as indirect sources from industrial carbon disulfide emissions. Compared to the previously published inventory, we found that the total anthropogenic source (direct and indirect) is 47% smaller. Using this new gridded inventory to drive the STEM/WRF atmospheric transport model, we found that the anthropogenic contribution to COS variation in the troposphere is small relative to the biosphere influence, which is encouraging of carbon cycle applications in this region. Additional anthropogenic sectors with highly uncertain emission factors require further field measurements.},
doi = {10.1002/2016JD025550},
journal = {Journal of Geophysical Research: Atmospheres},
number = 4,
volume = 122,
place = {United States},
year = {Tue Feb 21 00:00:00 EST 2017},
month = {Tue Feb 21 00:00:00 EST 2017}
}
  • Cited by 2
  • Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, themore » inventory is provided as annually varying estimates from years 1980–2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y -1 (range of 223–586 Gg S y -1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Lastly, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.« less
  • Cited by 27
  • Here we present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scaledependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show largemore » differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Finally, our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.« less
    Cited by 13
  • Here we present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scaledependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show largemore » differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Finally, our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.« less