skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anti-clogging filter system

Abstract

An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.

Inventors:
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1353094
Patent Number(s):
9,630,137
Application Number:
14/661,067
Assignee:
Lawrence Livermore National Security, LLC LLNL
DOE Contract Number:
AC52-07NA27344
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Mar 18
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Brown, Erik P. Anti-clogging filter system. United States: N. p., 2017. Web.
Brown, Erik P. Anti-clogging filter system. United States.
Brown, Erik P. 2017. "Anti-clogging filter system". United States. doi:. https://www.osti.gov/servlets/purl/1353094.
@article{osti_1353094,
title = {Anti-clogging filter system},
author = {Brown, Erik P.},
abstractNote = {An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 4
}

Patent:

Save / Share:
  • An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain thatmore » preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.« less
  • A process is provided for purifying filter-clogging coal tar residue of the type obtained by low-temperature carbonization of coal. Such coal tar residues include viscous organic coal tar constituents, particulate solid impurities and liquid water. Applicants' process includes the step of heating coal at 450*-700* C. At least substantially in the absence of air to thereby decompose the coal to products including coal tar, the coal tar being of the type containing liquid water, particulate solid impurities, and viscous organic coal tar constituents including light oils, the light oils incidentally combining with the liquid water to produce a filter-clogging emulsion.more » The thusformed coal tar is then heated to a temperature above the boiling point of water and sufficiently high to thereby distill off substantially all of the water and the light oils to thereby obtain an intermediate product which is substantially free from the presence of liquid water and light oil constituents which in combination form a filter-clogging emulsion. Finally, the intermediate product is subsequently filtered to thereby separate the particulate solid impurities from the undistilled viscous constituents of the coal tar.« less
  • A CT scanner in which the amount of x-ray information acquired per unit time is substantially increased by using a continuous-on x-ray source and a sampled data system with the detector. An analog filter is used in the sampling system for band limiting the detector signal below the highest frequency of interest, but is a practically realizable filter and is therefore non-ideal. A digital filter is applied to the detector data after digitization to compensate for the characteristics of the analog filter, and to provide an overall filter characteristic more nearly like the ideal.
  • An improved method is described for in-situ microbial filter bioremediation having increasingly operational longevity of an in-situ microbial filter emplaced into an aquifer. A method is described for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation is described.
  • A description is given of a set of spatial filters that are used to optically relay a laser beam from one position to a downstream position with minimal nonlinear phase distortion and beam intensity variation. The use of the device will result in a reduction of deleterious beam self-focusing and produce a significant increase in neutron yield from the implosion of targets caused by their irradiation with multi-beam glass laser systems.