skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Search for Low-Mass Dark Matter wtih SuperCDMS Soudan and Study of Shorted Electric Field Configurations in CDMS Detectors

Abstract

The area of dark matter is one of the most interesting and exciting topics in physics today. Existing at the intersection of particle physics and astrophysics, the existence of a new dark matter particle can be used to explain many astrophysical and cosmological observations, as well as to reconcile outstanding issues in the standard model of particle physics. Experiments such as SuperCDMS are built to detect dark matter in the lab by looking for low-energy nuclear recoils produced by collisions between dark matter particles and atoms in terrestrial detectors. SuperCDMS Soudan is particularly well-suited to follow up on possible hints of low-mass dark matter seen by other recent experiments because of its low thresholds and excellent background discrimination. Analyzing SuperCDMS Soudan data to look for low-mass dark matter comes with particular challenges because of the low signal-to-noise very near threshold. However, with a detailed background model developed by scaling high-energy events down into the low-energy signal region, SuperCDMS Soudan produced worldleading limits on the existence of low-mass dark matter. In addition, a few SuperCDMS Soudan detectors experienced cold hardware problems that can affect the data collected. Of particular interest is one detector considered for the low-mass WIMP search that hasmore » one of its charge electrodes shorted to chassis ground. Three events were observed in this detector upon unblinding the SuperCDMS Soudan low-energy data, even though <1 event was expected based on pre-unblinding calulations. However, the data collected by the shorted detector may have been compromised since an electrode shorted to ground will modify the electric field in the detector. The SuperCDMS Detector Monte Carlo (DMC) provides an excellent way to model the effects of the modified electric field, so a new model of the expected backgrounds in the low-mass WIMP search is developed using the DMC to try to explain how the short may have affected the data collected. This thesis is organized as follows: Chapter 1 gives a broad introduction to dark matter, discussing the astrophysical and cosmological evidence for its existence, listing several possible particle physics candidates, and outlining several experimental strategies to look for dark matter. Chapter 2 is an overview of CDMS detector technology and the experimental setup at the Soudan Underground Laboratory, with a focus on how data coming out of Soudan is analyzed. Chapter 3 presents results from a search for low-mass dark matter at SuperCDMS Soudan and discusses the interpretation of the results. Chapter 4 contains follow-up work that uses the CDMS Detector Monte Carlo (DMC) to understand the possible systematics associated with a detector that had one of its charge electrodes shorted to ground. This chapter represents the first time the DMC has been used to inform ongoing CDMS analysis. Chapter 5 takes a brief detour into the world of effective field theory (EFT), examining the consequences of an expanded set of possible WIMP-nucleon interactions in the EFT framework. Finally, Chapter 6 wraps up the material of the previous chapters and discusses how the research presented in this thesis can be applied as CDMS moves toward SuperCDMS SNOLAB.« less

Authors:
 [1]
  1. Stanford Univ., CA (United States)
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1352049
Report Number(s):
FERMILAB-THESIS-2015-41
1452744
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Schneck, Kristiana. Search for Low-Mass Dark Matter wtih SuperCDMS Soudan and Study of Shorted Electric Field Configurations in CDMS Detectors. United States: N. p., 2015. Web. doi:10.2172/1352049.
Schneck, Kristiana. Search for Low-Mass Dark Matter wtih SuperCDMS Soudan and Study of Shorted Electric Field Configurations in CDMS Detectors. United States. doi:10.2172/1352049.
Schneck, Kristiana. Thu . "Search for Low-Mass Dark Matter wtih SuperCDMS Soudan and Study of Shorted Electric Field Configurations in CDMS Detectors". United States. doi:10.2172/1352049. https://www.osti.gov/servlets/purl/1352049.
@article{osti_1352049,
title = {Search for Low-Mass Dark Matter wtih SuperCDMS Soudan and Study of Shorted Electric Field Configurations in CDMS Detectors},
author = {Schneck, Kristiana},
abstractNote = {The area of dark matter is one of the most interesting and exciting topics in physics today. Existing at the intersection of particle physics and astrophysics, the existence of a new dark matter particle can be used to explain many astrophysical and cosmological observations, as well as to reconcile outstanding issues in the standard model of particle physics. Experiments such as SuperCDMS are built to detect dark matter in the lab by looking for low-energy nuclear recoils produced by collisions between dark matter particles and atoms in terrestrial detectors. SuperCDMS Soudan is particularly well-suited to follow up on possible hints of low-mass dark matter seen by other recent experiments because of its low thresholds and excellent background discrimination. Analyzing SuperCDMS Soudan data to look for low-mass dark matter comes with particular challenges because of the low signal-to-noise very near threshold. However, with a detailed background model developed by scaling high-energy events down into the low-energy signal region, SuperCDMS Soudan produced worldleading limits on the existence of low-mass dark matter. In addition, a few SuperCDMS Soudan detectors experienced cold hardware problems that can affect the data collected. Of particular interest is one detector considered for the low-mass WIMP search that has one of its charge electrodes shorted to chassis ground. Three events were observed in this detector upon unblinding the SuperCDMS Soudan low-energy data, even though <1 event was expected based on pre-unblinding calulations. However, the data collected by the shorted detector may have been compromised since an electrode shorted to ground will modify the electric field in the detector. The SuperCDMS Detector Monte Carlo (DMC) provides an excellent way to model the effects of the modified electric field, so a new model of the expected backgrounds in the low-mass WIMP search is developed using the DMC to try to explain how the short may have affected the data collected. This thesis is organized as follows: Chapter 1 gives a broad introduction to dark matter, discussing the astrophysical and cosmological evidence for its existence, listing several possible particle physics candidates, and outlining several experimental strategies to look for dark matter. Chapter 2 is an overview of CDMS detector technology and the experimental setup at the Soudan Underground Laboratory, with a focus on how data coming out of Soudan is analyzed. Chapter 3 presents results from a search for low-mass dark matter at SuperCDMS Soudan and discusses the interpretation of the results. Chapter 4 contains follow-up work that uses the CDMS Detector Monte Carlo (DMC) to understand the possible systematics associated with a detector that had one of its charge electrodes shorted to ground. This chapter represents the first time the DMC has been used to inform ongoing CDMS analysis. Chapter 5 takes a brief detour into the world of effective field theory (EFT), examining the consequences of an expanded set of possible WIMP-nucleon interactions in the EFT framework. Finally, Chapter 6 wraps up the material of the previous chapters and discusses how the research presented in this thesis can be applied as CDMS moves toward SuperCDMS SNOLAB.},
doi = {10.2172/1352049},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {1}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share: