Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Rapid mold replication

Conference ·
OSTI ID:135065
The desire to reduce tooling costs have driven manufacturers to investigate new manufacturing methods and materials. In the plastics injection molding industry replicating molds to meet production needs is time consuming (up to 6 months) and costly in terms of lost business. We have recently completed a feasibility study demonstrating the capability of high rate Electron Beam Physical Vapor Deposition (EBPVD) in producing mold inserts in days, not months. In the current practice a graphite mandrel, in the shape of the insert`s negative image, was exposed to a jet of metal vapor atoms emanating from an electron beam heated source of an aluminum-bronze alloy. The condensation rate of the metal atoms on the mandrel was sufficient to allow the deposit to grow at over 30 {mu}m/min or 1.2 mils per minute. The vaporization process continued for approximately 14 hours after which the mandrel and deposit were removed from the EBPVD vacuum chamber. The mandrel and condensate were easily separated resulting in a fully dense aluminum-bronze mold insert about 2.5 cm or one inch thick. This mold was subsequently cleaned and drilled for water cooling passages and mounted on a fixture for operation in an actual injection molding machine. Results of the mold`s operation were extremely successful showing great promise for this technique. This paper describes the EBPVD feasibility demonstration in more detail and discusses future development work needed to bring this technique into practice.
Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
135065
Report Number(s):
UCRL-JC--120708; CONF-951033--26; ON: DE96002574
Country of Publication:
United States
Language:
English