skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles

Abstract

Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation—the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm—to better understand the reason for this durability. First, using environmental scanning transmission electron microscopy, we monitor the hydrogen absorption process in real time with 3 nm resolution. Then, using dark-field imaging, we structurally examine the reaction intermediates with 1 nm resolution. The reaction proceeds through nucleation and growth of the new phase in corners of the nanocubes. As the hydrogenated phase propagates across the particles, portions of the lattice misorient by 1.5%, diminishing crystal quality. Once transformed, all the particles explored return to a pristine state. As a result, the nanoparticles’ ability to remove crystallographic imperfections renders them more durable than their bulk counterparts.

Authors:
 [1];  [1];  [2];  [1];  [1];  [3]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); DIFFER - Dutch Institute for Fundamental Energy Research, Eindhoven (The Netherlands)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1347444
Grant/Contract Number:
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; materials chemistry; materials for energy and catalysis; nanoscale materials; transmission electron microscopy

Citation Formats

Narayan, Tarun C., Hayee, Fariah, Baldi, Andrea, Koh, Ai Leen, Sinclair, Robert, and Dionne, Jennifer A. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles. United States: N. p., 2017. Web. doi:10.1038/ncomms14020.
Narayan, Tarun C., Hayee, Fariah, Baldi, Andrea, Koh, Ai Leen, Sinclair, Robert, & Dionne, Jennifer A. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles. United States. doi:10.1038/ncomms14020.
Narayan, Tarun C., Hayee, Fariah, Baldi, Andrea, Koh, Ai Leen, Sinclair, Robert, and Dionne, Jennifer A. Mon . "Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles". United States. doi:10.1038/ncomms14020. https://www.osti.gov/servlets/purl/1347444.
@article{osti_1347444,
title = {Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles},
author = {Narayan, Tarun C. and Hayee, Fariah and Baldi, Andrea and Koh, Ai Leen and Sinclair, Robert and Dionne, Jennifer A.},
abstractNote = {Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation—the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm—to better understand the reason for this durability. First, using environmental scanning transmission electron microscopy, we monitor the hydrogen absorption process in real time with 3 nm resolution. Then, using dark-field imaging, we structurally examine the reaction intermediates with 1 nm resolution. The reaction proceeds through nucleation and growth of the new phase in corners of the nanocubes. As the hydrogenated phase propagates across the particles, portions of the lattice misorient by 1.5%, diminishing crystal quality. Once transformed, all the particles explored return to a pristine state. As a result, the nanoparticles’ ability to remove crystallographic imperfections renders them more durable than their bulk counterparts.},
doi = {10.1038/ncomms14020},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {Mon Jan 16 00:00:00 EST 2017},
month = {Mon Jan 16 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7works
Citation information provided by
Web of Science

Save / Share:
  • Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure-function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125-325more » nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.« less
  • Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less
  • Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less
  • Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layermore » dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less
  • Using a combination of low-temperature scanning tunneling microscopy and density functional theory it is demonstrated how the nature of an inert host metal of an alloy can affect the thermodynamics and kinetics of a reaction pathway in a much more profound way than simply a dilution, electronic, or geometric effect. This study reveals that individual, isolated Pd atoms can promote H{sub 2} dissociation and spillover onto a Cu(111) surface, but that the same mechanism is not observed for an identical array of Pd atoms in Au(111).