skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rapid and Facile Formation of P3HT Organogels via Spin Coating: Tuning Functional Properties of Organic Electronic Thin Films

Journal Article · · Advanced Functional Materials
 [1];  [1];  [1];  [1];  [2];  [2]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

Poly(3-hexyl thiophene) (P3HT) is widely regarded as the benchmark polymer when studying the physics of conjugated polymers used in organic electronic devices. P3HT can self-assemble via stacking of its backbone, leading to an assembly and growth of P3HT fi brils into 3D percolating organogels. These structures are capable of bridging the electrodes, providing multiple pathways for charge transport throughout the active layer. Here, a novel set of conditions is identified and discussed for P3HT organogel network formation via spin coating by monitoring the spin-coating process from various solvents. The development of organogel formation is detected by in situ static light scattering, which measures both the thinning rate by refl ectance and structural development in the fi lm via off-specular scattering during fi lm formation. Optical microscopy and thermal annealing experiments provide ex situ confi rmation of organogel fabrication. The role of solution characteristics, including solvent boiling point, P3HT solubility, and initial P3HT solution concentration on organogel formation, is examined to correlate these parameters to the rate of film formation, organogel-onset concentration, and overall network size. The correlation of film properties to the fabrication parameters is also analyzed within the context of the hole mobility and density-of-states measured by impedance spectroscopy.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1347305
Journal Information:
Advanced Functional Materials, Vol. 25, Issue 36; ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English

Related Subjects