skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linkage analysis excludes the glaucoma locus on 1q from involvement in autosomal dominant glaucoma with iris hypoplasia

Abstract

Genetic factors have been implicated in a variety of types of glaucoma including primary open-angle glaucoma, infantile glaucoma, pigmentary glaucoma, and juvenile open-angle glaucoma. We previously mapped the disease-causing gene for one type of juvenile open angle glaucoma to chromosome 1q21-31. Weatherill and Hart (1969) and Pearce (1983) each noted the association of iris hypoplasia and early-onset autosomal dominant glaucoma. We recently had the opportunity to study a large family (12 affected members) with this phenotype. Affected individuals developed glaucoma at an average age of 30 years. These patients also have a strikingly underdeveloped iris stroma which causes a peculiar eye color. Linkage analysis was able to completely exclude the 1q glaucoma locus from involvement in the disorder that affects this family. A complete clinical description of the family and linkage results at additional candidate loci will be presented.

Authors:
; ;  [1]
  1. and others
Publication Date:
OSTI Identifier:
134695
Report Number(s):
CONF-941009-
Journal ID: AJHGAG; ISSN 0002-9297; TRN: 95:005313-1433
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Human Genetics; Journal Volume: 55; Journal Issue: Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; PATIENTS; HEREDITARY DISEASES; SENSE ORGANS DISEASES; PHENOTYPE; GENES; GENETIC MAPPING; HUMAN CHROMOSOME 1; AGE DEPENDENCE; STATISTICS; DOMINANT MUTATIONS

Citation Formats

Heon, E., Sheth, B.P., and Kalenak, J.W. Linkage analysis excludes the glaucoma locus on 1q from involvement in autosomal dominant glaucoma with iris hypoplasia. United States: N. p., 1994. Web.
Heon, E., Sheth, B.P., & Kalenak, J.W. Linkage analysis excludes the glaucoma locus on 1q from involvement in autosomal dominant glaucoma with iris hypoplasia. United States.
Heon, E., Sheth, B.P., and Kalenak, J.W. Thu . "Linkage analysis excludes the glaucoma locus on 1q from involvement in autosomal dominant glaucoma with iris hypoplasia". United States. doi:.
@article{osti_134695,
title = {Linkage analysis excludes the glaucoma locus on 1q from involvement in autosomal dominant glaucoma with iris hypoplasia},
author = {Heon, E. and Sheth, B.P. and Kalenak, J.W.},
abstractNote = {Genetic factors have been implicated in a variety of types of glaucoma including primary open-angle glaucoma, infantile glaucoma, pigmentary glaucoma, and juvenile open-angle glaucoma. We previously mapped the disease-causing gene for one type of juvenile open angle glaucoma to chromosome 1q21-31. Weatherill and Hart (1969) and Pearce (1983) each noted the association of iris hypoplasia and early-onset autosomal dominant glaucoma. We recently had the opportunity to study a large family (12 affected members) with this phenotype. Affected individuals developed glaucoma at an average age of 30 years. These patients also have a strikingly underdeveloped iris stroma which causes a peculiar eye color. Linkage analysis was able to completely exclude the 1q glaucoma locus from involvement in the disorder that affects this family. A complete clinical description of the family and linkage results at additional candidate loci will be presented.},
doi = {},
journal = {American Journal of Human Genetics},
number = Suppl.3,
volume = 55,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 1994},
month = {Thu Sep 01 00:00:00 EDT 1994}
}
  • The gene for one form of juvenile glaucoma has been mapped to chromosome 1q21-q31. This raises the possibility of primary open-angle glaucoma (POAG) also mapping to this region if the same defective gene causes both diseases. To ask this question linkage analysis was performed on a large POAG kindred. Blood samples or skin biopsies were obtained from 40 members of this family. Individuals were diagnosed as having POAG if they met two or more of the following criteria: (1) Visual field defects compatible with glaucoma on automated perimetry; (2) Optic nerve head and/or nerve fiber layer analysis compatible with glaucomatousmore » damage; (3) high intraocular pressures (> 20 mm Hg). Patients were considered glaucoma suspects if they only met one criterion. These individuals were excluded from the analysis. Of the 40 members, seven were diagnosed with POAG; four were termed suspects. The earliest age of onset was 38 years old, while the average age of onset was 65 years old. We performed two-point and multipoint linkage analysis, using five markers which encompass the region 1q21-q31; specifically, D1S194, D1S210, D1S212, D1S191 and LAMB2. Two-point lod scores excluded tight linkage with all markers except D1S212 (maximum lod score of 1.07 at theta = 0.0). In the multipoint analysis, including D1S210-D1S212-LAMB2 and POAG, the entire 11 cM region spanned by these markers was excluded for linkage with POAG; that is, lod scores were < -2.0. In conclusion, POAG in this family does not map to chromosome 1q21-q31 and, thus, they carry a gene that is distinct from the juvenile glaucoma gene.« less
  • Glaucoma is a term used to describe a group of disorders which have in common a characteristic degeneration of the optic nerve associated with typical visual field defects and usually associated with elevated intraocular pressure. Two percent of white Americans and 6-10% of black Americans are affected by the disease. Compelling data indicate that susceptibility to many types of glaucoma is inherited. Hereditary juvenile glaucoma is one form of glaucoma that develops in children and is inherited as an autosomal dominant trait with high penetrance. Using a single large Caucasian pedigree affected with autosomal dominant juvenile glaucoma, Sheffield discovered positivemore » linkage to a group of markers that map to a 30 cM region on the long arm of chromosome 1 (1q21-q31). We have subsequently identified three unrelated Caucasian pedigrees affected with autosomal dominant juvenile glaucoma that also demonstrate linkage to this region on chromosome 1, with the highest combined lod score of 5.12 at theta = .05 for marker D1S218. The identification of critical recombinant individuals in our three pedigrees has allowed us to further localize the disease gene to a 12 cM region between markers D1S242 and D1S431. In addition, we have identified several pedigrees which do not demonstrate linkage to chromosome 1q, including a black family affected with autosomal dominant juvenile glaucoma that is indistinguishable clinically from the disorder affecting the caucasian pedigrees and three pedigrees affected with pigmentary dispersion syndrome, a form of glaucoma that also affects the juvenile population and is also inherited as an autosomal dominant trait. These findings provide evidence for genetic heterogeneity in juvenile glaucoma.« less
  • Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. At least two distinct forms of ADPKD are now well defined. In {approximately}86% of affected European families, a gene defect localized to 16p13.3 was responsible for ADPKD, while a second locus has been recently localized to 4q13-q23 as candidate for the disease in the remaining families. We present confirmation of linkage to microsatellite markers on chromosome 4q in eight Spanish families with ADPKD, in which the disease was not linked to 16p13.3. By linkage analysis with marker D4S423, a maximum lod score of 9.03 at a recombination fraction ofmore » .00 was obtained. Multipoint linkage analysis, as well as a study of recombinant haplotypes, placed the PKD2 locus between D4S1542 and D4S1563, thereby defining a genetic interval of {approximately}1 cM. The refined map will serve as a genetic framework for additional genetic and physical mapping of the region and will improve the accuracy of presymptomatic diagnosis of PKD2. 25 refs., 4 figs., 1 tab.« less
  • Autosomal dominant exudative vitreoretinopathy is a disorder affecting primarily the development of the human retinal vascular system. The disease locus has recently been assigned to 11q13-q23 by linkage studies in two families. Two-point analysis on a total of four families has now revealed close linkage (z[sub max] = 8.34 at [theta] = 0.00) between the disease locus and D11S873. Multipoint linkage analysis mapped the disease locus between D11S527/D11S533 and D11S 35 with a maximum lod score of over 11 directly at D11S873. No evidence appeared for genetic/linkage heterogeneity among the four families examined. 6 refs., 1 fig., 1 tab.
  • Glaucoma is a common disorder that results in irreversible damage to the optic nerve, causing absolute blindness. In most cases, the optic nerve is damaged by an elevation of the intraocular pressure that is the result of an abnormality in the normal drainage function of the trabecular meshwork. A family history of glaucoma is an important risk factor for the disease, suggesting that genetic defects predisposing to this condition are likely. Three pedigrees segregating an autosomal dominant juvenile glaucoma demonstrated significant linkage to a group of closely spaced markers on chromosome 1. These results confirm the initial mapping of thismore » disease and suggest that this region on chromosome 1 contains an important locus for juvenile glaucoma. The authors describe recombination events that improve the localization of the responsible gene, reducing the size of the candidate region from 30 to 12 cM. 27 refs., 2 figs., 1 tab.« less