skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design Considerations for Proposed Fermilab Integrable RCS

Abstract

Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.

Authors:
ORCiD logo [1];
  1. Fermilab
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
IOTA
OSTI Identifier:
1346931
Report Number(s):
arXiv:1703.00953; FERMILAB-CONF-17-030-APC
1516034
DOE Contract Number:
AC02-07CH11359
Resource Type:
Conference
Resource Relation:
Conference: 2nd North American Particle Accelerator Conference, Chicago, Illinois, USA, 10/09-10/14/2016
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Eldred, Jeffrey, and Valishev, Alexander. Design Considerations for Proposed Fermilab Integrable RCS. United States: N. p., 2017. Web.
Eldred, Jeffrey, & Valishev, Alexander. Design Considerations for Proposed Fermilab Integrable RCS. United States.
Eldred, Jeffrey, and Valishev, Alexander. Thu . "Design Considerations for Proposed Fermilab Integrable RCS". United States. doi:. https://www.osti.gov/servlets/purl/1346931.
@article{osti_1346931,
title = {Design Considerations for Proposed Fermilab Integrable RCS},
author = {Eldred, Jeffrey and Valishev, Alexander},
abstractNote = {Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Mar 02 00:00:00 EST 2017},
month = {Thu Mar 02 00:00:00 EST 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.
  • The Project X Injector Experiment (PIXIE) will be a prototype of the Project X front end that will be used to validate the design concept and decrease technical risks. One of the most challenging components of PIXIE is the wide-band chopping system of the Medium Energy Beam Transport (MEBT) section, which will form an arbitrary bunch pattern from the initially CW 162.5 MHz 5mA beam. The present scenario assumes diverting 80% of the beam to an absorber to provide a beam with the average current of 1mA to SRF linac. This absorber must withstand a high level of energy depositionmore » and high ion fluence, while being positioned in proximity of the superconductive cavities. This paper discusses design considerations for the absorber. Thermal and mechanical analyses of a conceptual design are presented, and future plans for the fabrication and testing of a prototype are described.« less
  • The Main Injector project at Fermilab requires a dipole with good field quality from 0.1 T to 1.73 T with ramps to full field at up to 2.4 T/s over an aperture of 10 {times} 5 cm. Operation of this magnet for the variety of purposes proposed for the Main Injector results in a design with low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction. The resulting design is presented, along with measurement results of a prototype magnet emphasizing the field uniformity. 6 refs., 4 figs., 2 tabs.
  • The use of Second Harmonic (SH) rf is being investigated to increase the Rapid Cycling Synchrotron (RCS) current limit. Hofmann-Pedersen distributions are employed to provide analytical guidance. The SH phase {theta}, is optimized using a numerical analysis to maximize transmission and minimize instabilities. The effect of the RCS stainless steel liner on the impedance of the machine is also discussed.