skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design Considerations for Proposed Fermilab Integrable RCS

Abstract

Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.

Authors:
ORCiD logo [1];
  1. Fermilab
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
IOTA
OSTI Identifier:
1346931
Report Number(s):
arXiv:1703.00953; FERMILAB-CONF-17-030-APC
1516034
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Conference
Resource Relation:
Conference: 2nd North American Particle Accelerator Conference, Chicago, Illinois, USA, 10/09-10/14/2016
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Eldred, Jeffrey, and Valishev, Alexander. Design Considerations for Proposed Fermilab Integrable RCS. United States: N. p., 2017. Web.
Eldred, Jeffrey, & Valishev, Alexander. Design Considerations for Proposed Fermilab Integrable RCS. United States.
Eldred, Jeffrey, and Valishev, Alexander. Thu . "Design Considerations for Proposed Fermilab Integrable RCS". United States. doi:. https://www.osti.gov/servlets/purl/1346931.
@article{osti_1346931,
title = {Design Considerations for Proposed Fermilab Integrable RCS},
author = {Eldred, Jeffrey and Valishev, Alexander},
abstractNote = {Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Mar 02 00:00:00 EST 2017},
month = {Thu Mar 02 00:00:00 EST 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: