skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

Abstract

We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitation of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) thanmore » the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Indian Inst. of Science Education and Resesarch Kolkata, Mohanpur (India)
  2. Univ. of Massachusetts, Amherst, MA (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Univ. of Massachusetts, Amherst, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1344098
Alternate Identifier(s):
OSTI ID: 1361779
Grant/Contract Number:
FG02-87ER13744
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 146; Journal Issue: 7; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Seenivasan, H., Jackson, Bret, and Tiwari, Ashwani K.. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity. United States: N. p., 2017. Web. doi:10.1063/1.4976133.
Seenivasan, H., Jackson, Bret, & Tiwari, Ashwani K.. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity. United States. doi:10.1063/1.4976133.
Seenivasan, H., Jackson, Bret, and Tiwari, Ashwani K.. Fri . "Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity". United States. doi:10.1063/1.4976133. https://www.osti.gov/servlets/purl/1344098.
@article{osti_1344098,
title = {Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity},
author = {Seenivasan, H. and Jackson, Bret and Tiwari, Ashwani K.},
abstractNote = {We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitation of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.},
doi = {10.1063/1.4976133},
journal = {Journal of Chemical Physics},
number = 7,
volume = 146,
place = {United States},
year = {Fri Feb 17 00:00:00 EST 2017},
month = {Fri Feb 17 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Cited by 1
  • This paper investigates the reactivity of elemental carbon films deposited from the vapor phase with Fe and Ni substrates at room temperature. X-ray photoelectron spectroscopy (XPS) measurements are presented as a method for evaluating kinetic reaction data. Carbon films are deposited on different surface orientations representing geometries from a dense atom packing as in fcc (111) to an open surface structure as in fcc (100). During annealing experiments several reactions are observed (carbon subsurface diffusion, carbide formation, carbide decomposition, and graphite ordering). These reactions and the respective kinetic parameters are analyzed and quantified by XPS measurements performed while annealing atmore » elevated temperatures (620-820 K). The resulting activation barriers for carbon subsurface diffusion are compared with calculated values using the density functional theory. The determined kinetic parameters are used to reproduce the thermal behavior of carbon films on nickel surfaces.« less
  • Electronic structure methods based on density functional theory are used to construct a reaction path Hamiltonian for CH{sub 4} dissociation on the Ni(100) and Ni(111) surfaces. Both quantum and quasi-classical trajectory approaches are used to compute dissociative sticking probabilities, including all molecular degrees of freedom and the effects of lattice motion. Both approaches show a large enhancement in sticking when the incident molecule is vibrationally excited, and both can reproduce the mode specificity observed in experiments. However, the quasi-classical calculations significantly overestimate the ground state dissociative sticking at all energies, and the magnitude of the enhancement in sticking with vibrationalmore » excitation is much smaller than that computed using the quantum approach or observed in the experiments. The origin of this behavior is an unphysical flow of zero point energy from the nine normal vibrational modes into the reaction coordinate, giving large values for reaction at energies below the activation energy. Perturbative assumptions made in the quantum studies are shown to be accurate at all energies studied.« less
  • The atomic superposition electron delocalization molecular orbital (ASED-MO) method has been applied to a study of the favored bonding sites for benzene adsorbed on the (111), (100), and (110) crystal faces of nickel metal. The different faces were represented in the calculations by clusters, which contained 30 nickel atoms. By using the same size clusters and parameters, it was possible to compare the results among the three different crystal faces. The most favored (highest binding energy) sites for the benzene ring parallel to the surface were found to be the highest coordination site for the (111) and (100) planes andmore » the atop site for the (110) plane. These results are compared with both experimental and other theoretical calculations on these crystal planes. In addition, the bonding of the benzene to the Ni surfaces has been investigated by using [open quotes]bonding plots[close quotes], which are graphical representations of the Mulliken population matrix. By use of these bonding plots, a picture of the bonding of the benzene to the nickel surface is developed and an explanation for the increase of the binding energy with increased cluster size is discussed. 28 refs., 5 figs., 3 tabs.« less
  • We calculate activation barriers and prefactors for diffusion via hopping on (100), (110), and (111) surfaces of Ni and Cu. The calculations reveal that, when activation barriers decrease there is also a decrease in the prefactors such that the changes in both quantities partly compensate for each other with respect to the diffusivities. Thermodynamic functions which contribute to the prefactors are calculated from local vibrational density of states, showing that mainly entropy contributions control the prefactors. Our method allows one to trace the obtained values back to vibrational properties of the adatoms in both the minimum-energy and transition-state configurations, andmore » enables a physical understanding of why prefactors have certain values.« less