Identification of candidates for human disease genes using large-scale PCR mapping of gene-based STSs
- Univ. of Colorado Health Sciences Center, Denver, CO (United States); and others
We have developed a strategy for the rapid identification of possible human disease/syndrome genes. Using this procedure we found candidates for 45 human disease/syndrome genes from the first 200 genes mapped. New human genes are identified through automated single-pass sequencing into the 3{prime} untranslated (3{prime}UT) regions of human cDNAs. Primers derived from the 3{prime}UT region sequences, representing gene-based STSs, are used for PCR analyses of the CEPH megabase YAC DNA pools. With this approach {approximately}18,000 megabase YACs can be screened and a single YAC identified using only 52 PCR reactions. The YAC localization in conjunction with other mapping approaches, such as PCR mapping to chromosomes by means of somatic hybrids, allows mapping to chromosomal band locations. In this manner, each gene can be associated with its own STS which in turn specifies both a corresponding genomic clone and a specific location in the genome. These locations can be compared to purported locations of disease genes listed in Online Mendelian Inheritance in Man. Using our current collection of >3,000 human brain cDNA sequences as a resource, we have carried out a proof of principle study in which {approximately}200 cDNAs were mapped to YACs within a few months. Appropriate scale up of this strategy could permit mapping of most human genes and identification of many candidate disease genes over the next few years.
- OSTI ID:
- 134384
- Report Number(s):
- CONF-941009--
- Journal Information:
- American Journal of Human Genetics, Journal Name: American Journal of Human Genetics Journal Issue: Suppl.3 Vol. 55; ISSN AJHGAG; ISSN 0002-9297
- Country of Publication:
- United States
- Language:
- English
Similar Records
Construction of a yeast artificial chromosome contig encompassing the chromosome 14 Alzheimer`s disease locus
Clone ordering by simulated annealing: Application to the STS-content map of chromosome 21