Linking basin-scale and pore-scale gas hydrate distribution patterns in diffusion-dominated marine hydrate systems: DIFFUSION-DRIVEN HYDRATE GROWTH IN SANDS
Journal Article
·
· Geochemistry, Geophysics, Geosystems
- Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin Texas USA; University of Texas at Austin
- Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin Texas USA
- School of Earth Sciences, Ohio State University, Columbus Ohio USA
- School of Earth Sciences, Ohio State University, Columbus Ohio USA; GEOMAR Helmholtz Centre for Ocean Research, Kiel Germany
- Lamont Doherty Earth Observatory of Columbia University, Palisades New York USA
The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1 to 20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two- dimensional and basin-scale three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. As a result, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.
- Research Organization:
- Univ. of Texas at Austin, Austin, TX (United States)
- Sponsoring Organization:
- USDOE Office of Fossil Energy (FE)
- Grant/Contract Number:
- FE0013919
- OSTI ID:
- 1343742
- Journal Information:
- Geochemistry, Geophysics, Geosystems, Journal Name: Geochemistry, Geophysics, Geosystems Journal Issue: 2 Vol. 18; ISSN 1525-2027
- Publisher:
- American Geophysical UnionCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Methane Hydrate Formation in Thick Sandstones by Free Gas Flow
|
journal | June 2018 |
Mechanisms of Methane Hydrate Formation in Geological Systems
|
journal | October 2019 |
Factors Controlling Short‐Range Methane Migration of Gas Hydrate Accumulations in Thin Coarse‐Grained Layers
|
journal | August 2019 |
Similar Records
Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems
Linking pore-scale and basin-scale effects on diffusive methane transport in hydrate bearing environments through multi-scale reservoir simulations
Mechanisms for Methane Transport and Hydrate Accumulation in Coarse-Grained Reservoirs
Conference
·
Wed Dec 13 23:00:00 EST 2017
·
OSTI ID:1417466
Linking pore-scale and basin-scale effects on diffusive methane transport in hydrate bearing environments through multi-scale reservoir simulations
Conference
·
Thu Dec 15 23:00:00 EST 2016
·
OSTI ID:1338821
Mechanisms for Methane Transport and Hydrate Accumulation in Coarse-Grained Reservoirs
Technical Report
·
Wed Jun 27 00:00:00 EDT 2018
·
OSTI ID:1457393