skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mutation frequency and genotype/phenotype correlation among phenylketonuria patients from Georgia

Journal Article · · American Journal of Human Genetics
OSTI ID:134365
; ;  [1]
  1. Baylor College of Medicine, Houston, TX (United States); and others

Phenylketonuria (PKU) is an autosomal recessive disorder caused by a deficiency of hepatic phenylalanine hydroxylase (PAH). To determine the molecular basis of PKU in the state of Georgia, thirty-five Georgian PKU patients representing sixty independent alleles were examined by a combination of DGGE and direct sequence analysis. At present, this approach has led to the identification of 55/60 or about 92% of all mutant alleles. The relatively high frequencies of mutations common to the British Isles (R408W, I65T and L348V) are compatible with 1990 census data showing that 34% of the general Georgian population claim Irish, English or Scottish ancestors. Three new mutations, E76A (1/60), R241L (2/60), and R400R (2/60), were also detected in this study. Although the nucleotide substitution in codon 400 (AGG{r_arrow}CGG) did not change the amino acid sequence, it was the only base change detected in a scan of all 13 exons of two independent alleles. Since codon 400 is split between exons 11 and 12, this change may exert some effect on splicing, as has previously been seen in the PAH gene for the silent mutation Q304Q and the nonsense mutation Y356X, each of which effect codons immediately adjacent to splicing signals. This hypothesis remains to be tested by expression analysis or studies of ectopic transcripts. The remaining 19 characterized alleles contained one of 15 previously identified mutations. Twenty-five of the thirty non-related patients examined in this study were completely genotyped, and there was a strong correlation between mutant PAH genotype, PAH activity predicted from in vitro expression studies where known, and PKU or HPA phenotype. For mutations not yet studied by expression analysis, this correlation suggests that L213P, R241L, Y277D may drastically reduce residual PAH activity while F39L and E76A may retain significant amounts of PAH activity.

OSTI ID:
134365
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-1098
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English