Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D
This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.
- Research Organization:
- NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- DOE Contract Number:
- AC36-08GO28308
- OSTI ID:
- 1342826
- Report Number(s):
- NREL/CP-5000-67891
- Country of Publication:
- United States
- Language:
- English
Similar Records
A CFD/CSD interaction methodology for aircraft wings
RESULTS OF A FORCE TEST OF FOUR CONFIGURATIONS OF THE HI-LO INSTRUMENTED AND CHAFF ROCKETS IN THE SANDIA CORPORATION 12 X 12 INCH TRANSONIC WIND TUNNEL (PROGRAM III-46)