skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1342577· OSTI ID:1342577
 [1]
  1. Iowa State Univ., Ames, IA (United States)

Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage over cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self-organized patterns of functional nanoscale materials over large areas offer a tremendous potential for applications in optoelectronic devices, LEDs, solar cells, and biosensors. Meanwhile, spherical nanocrystals (i.e. CdSe/ZnS core/shell QDs) were placed in a hexagonal array of highly ordered cylindrical nanopores of PAMs by a simple dip-coating method and vacuum suction process, respectively. The fluorescence of CdSe/ZnS QD was retained after being filled inside PAMs and the filling contents were obtained via transmission UV-vis measurements.

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-07CH11358
OSTI ID:
1342577
Report Number(s):
IS-T 3181
Country of Publication:
United States
Language:
English