skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations

Abstract

GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by a sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.

Authors:
; ;  [1]
  1. Affymetrix, Santa Clara, CA (United States) [and others
Publication Date:
OSTI Identifier:
134195
Report Number(s):
CONF-941009-
Journal ID: AJHGAG; ISSN 0002-9297; TRN: 95:005313-0931
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Human Genetics; Journal Volume: 55; Journal Issue: Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; GENES; GENE MUTATIONS; DNA SEQUENCING; SCREENING; BIOASSAY; EVALUATION; SIZE; OLIGONUCLEOTIDES; PROBES; DNA HYBRIDIZATION; FLUORESCENCE

Citation Formats

Cronn, M.T., Miyada, C.G., and Fucini, R.V. GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations. United States: N. p., 1994. Web.
Cronn, M.T., Miyada, C.G., & Fucini, R.V. GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations. United States.
Cronn, M.T., Miyada, C.G., and Fucini, R.V. Thu . "GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations". United States. doi:.
@article{osti_134195,
title = {GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations},
author = {Cronn, M.T. and Miyada, C.G. and Fucini, R.V.},
abstractNote = {GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by a sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.},
doi = {},
journal = {American Journal of Human Genetics},
number = Suppl.3,
volume = 55,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 1994},
month = {Thu Sep 01 00:00:00 EDT 1994}
}
  • We are developing assays for the detection of cystic fibrosis mutations based on DNA hybridization. A DNA sample is amplified by PCR, labeled by incorporating a fluorescein-tagged dNTP, enzymatically treated to produce smaller fragments and hybridized to a series of short (13-16 bases) oligonucleotides synthesized on a glass surface via photolithography. The hybrids are detected by eqifluorescence and mutations are identified by the specific pattern of hybridization. In a GeneChip assay, the chip surface is composed of a series of subarrays, each being specific for a particular mutation. Each subarray is further subdivided into a series of probes (40 total),more » half based on the mutant sequence and the remainder based on the wild-type sequence. For each of the subarrays, there is a redundancy in the number of probes that should hybridize to either a wild-type or a mutant target. The multiple probe strategy provides sequence information for a short five base region overlapping the mutation site. In addition, homozygous wild-type and mutant as well as heterozygous samples are each identified by a specific pattern of hybridization. The small size of each probe feature (250 x 250 {mu}m{sup 2}) permits the inclusion of additional probes required to generate sequence information by hybridization.« less
  • We have developed a rapid, single-tube, non-isotopic assay that screens a patient sample for the presence of 31 cystic fibrosis (CF) mutations. This assay can identify these mutations in a single reaction tube and a single electrophoresis run. Sample preparation is a simple, boil-and-go procedure, completed in less than an hour. The assay is composed of a 15-plex PCR, followed by a 61-plex oligonucleotide ligation assay (OLA), and incorporates a novel detection scheme, Sequence Coded Separation. Initially, the multiplex PCR amplifies 15 relevant segments of the CFTR gene, simultaneously. These PCR amplicons serve as templates for the multiplex OLA, whichmore » detects the normal or mutant allele at all loci, simultaneously. Each polymorphic site is interrogated by three oligonucleotide probes, a common probe and two allele-specific probes. Each common probe is tagged with a fluorescent dye, and the competing normal and mutant allelic probes incorporate different, non-nucleotide, mobility modifiers. These modifiers are composed of hexaethylene oxide (HEO) units, incorporated as HEO phosphoramidite monomers during automated DNA synthesis. The OLA is based on both probe hybridization and the ability of DNA ligase to discriminate single base mismatches at the junction between paired probes. Each single tube assay is electrophoresed in a single gel lane of a 4-color fluorescent DNA sequencer (Applied Biosystems, Model 373A). Each of the ligation products is identified by its unique combination of electrophoretic mobility and one of three colors. The fourth color is reserved for the in-lane size standard, used by GENESCAN{sup TM} software (Applied Biosystems) to size the OLA electrophoresis products. The Genotyper{sub TM} software (Applied Biosystems) decodes these Sequence-Coded-Separation data to create a patient summary report for all loci tested.« less
  • To determine the distribution and frequency of cystic fibrosis (CF) mutations in the Israeli population, the authors have screened 96 patients for 11 relatively common mutations. Five mutations - [Delta]F508, G542X, W1282X, N1303K, and 3849 + 10kb C[yields]T-were found to account for 97% of the CF alleles in the Ashkenazi Jews. In contrast, of the 11 mutations tested, only [Delta]F508 was detected in Jewish patients of Sephardic or Oriental origin, accounting for 43% of the CF alleles. Four mutations - [Delta]F508, G542X, W1282X, and N1303K- accounted for 55% of the CF alleles in Arab patients. In a pilot screening study,more » a random sample of 424 Ashkenazi individuals was analyzed for three mutations - [Delta]F508, W128X, and G542X. Thirteen individuals were detected as heterozygotes (six for [Delta]F508 and seven for W1282X), predicting a heterozygote frequency of 1:29. This is similar to the frequency of carriers in the Caucasian population of northern European ancestry. On the basis of these data, the Ashkenazi populations is considered to be a candidate for CF heterozygote screening. 32 refs., 2 tabs.« less
  • The Hutterite population is a genetic isolate with an increased incidence of cystic fibrosis (CF). Previously the authors identified three CF haplotypes defined by polymorphisms flanking the CF transmembrane conductance regulator (CFTR) gene. [Delta]F508 was present on one of the haplotypes in only 35% of CF chromosomes. They hypothesized that the other two CF haplotypes, one of which was the most common and the other of which is rare, each harbored different non-[Delta]F508 mutations. Single-strand conformation polymorphism analysis detected a missense mutation, M1101K, in both chromosomes of a Hutterite patient carrying the two non-[Delta]F508 haplotypes. M1101K appears to have originatedmore » on an uncommon CFTR allele and to be infrequent outside the Hutterite population. The presence of M1101K on two haplotypes is likely the result of a CFTR intragenic recombination which occurred since the founding, 10-12 generations ago, of the Hutterite population. The crossover was located between exons 14a and 17b, an interval of approximately 15 kbp. [Delta]F508 and M1101K accounted for all of the CF mutations in patients from 16 CF families representing the three subdivisions of the Hutterite population. 38 refs., 3 figs., 1 tab.« less
  • Sixty-one patients with cystic fibrosis (CF) from Moldova were tested for mutations {Delta}F508, G551D, and R553X. Frequencies of various alleles of the repeated GATT sequence in intron 6B of the GFTR gene, their linkage to other polymorphic markers, and various mutations were determined. The frequency of occurrence of mutation {Delta}F508 was only 25%. An absolute majority of CF patients (80%) had pancreatic insufficiency. Mutations G551D and R553X were not found in our sample. Each of 31 chromosomes with mutation {Delta}F508 carry the 6-GATT allele. Most {open_quotes}non {Delta}F508{close_quotes} (78%) and normal (80%) chromosomes were marked by the 7-GATT allele. Twenty-seven {Delta}F508more » chromosomes (96.4%) belong to haplotype B6, and only one to D6. Most chromosomes with {open_quotes}non {Delta}F508{close_quotes} mutations are associated with haplotypes D7 (26.3%) and C7 (21%). In addition, a significant portion of chromosomes from this subgroup were associated with haplotypes A7 (23.7%), A6 (10.5%), and C6 (2.7%), which are not yet described for mutant chromosomes. The results obtained demonstrate that CF in Moldova is mainly associated with mutations other than {Delta}F508, G551D, and R553X. Severe forms of the disease, with pancreatic insufficiency, are more frequently caused by these mutations; moreover, our data provides strong evidence for the presence of at least seven additional CF mutations in Moldova, apart from {Delta}F508, G551D, and R553X. Some of these are probably not described.« less