skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

Abstract

1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compression heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.

Authors:
ORCiD logo [1];  [2];  [2];  [3];  [2];  [2]; ORCiD logo [1];  [1]
  1. Univ. of California, San Diego, La Jolla, CA (United States)
  2. Magneto-Inertial Fusion Technologies, Inc., Irvine, CA (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1340520
Report Number(s):
SAND-2016-9947J
Journal ID: ISSN 1070-664X; 648005; TRN: US1701073
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 12; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Narkis, J., Rahman, H. U., Ney, P., Desjarlais, M. P., Wessel, F. J., Conti, F., Valenzuela, J. C., and Beg, F. N. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions. United States: N. p., 2016. Web. doi:10.1063/1.4972547.
Narkis, J., Rahman, H. U., Ney, P., Desjarlais, M. P., Wessel, F. J., Conti, F., Valenzuela, J. C., & Beg, F. N. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions. United States. doi:10.1063/1.4972547.
Narkis, J., Rahman, H. U., Ney, P., Desjarlais, M. P., Wessel, F. J., Conti, F., Valenzuela, J. C., and Beg, F. N. Thu . "Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions". United States. doi:10.1063/1.4972547. https://www.osti.gov/servlets/purl/1340520.
@article{osti_1340520,
title = {Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions},
author = {Narkis, J. and Rahman, H. U. and Ney, P. and Desjarlais, M. P. and Wessel, F. J. and Conti, F. and Valenzuela, J. C. and Beg, F. N.},
abstractNote = {1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compression heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.},
doi = {10.1063/1.4972547},
journal = {Physics of Plasmas},
issn = {1070-664X},
number = 12,
volume = 23,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Suppression of Rayleigh–Taylor and bulk convective instabilities in imploding plasma liners and pinches
journal, June 1990

  • Bud’ko, A. B.; Liberman, M. A.; Velikovich, A. L.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 6
  • DOI: 10.1063/1.859252

Steady-state radiative cooling rates for low-density, high-temperature plasmas
journal, November 1977


Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Transport of Magnetic Flux in an Arbitrary Coordinate ALE Code
journal, February 1998

  • Peterkin, Robert E.; Frese, Michael H.; Sovinec, Carl R.
  • Journal of Computational Physics, Vol. 140, Issue 1
  • DOI: 10.1006/jcph.1998.5880

Control of the Rayleigh–Taylor instability in a staged Z pinch
journal, December 2004

  • Rahman, H. U.; Ney, P.; Rostoker, N.
  • Physics of Plasmas, Vol. 11, Issue 12
  • DOI: 10.1063/1.1814998

A review of the dense Z -pinch
journal, June 2011


Parameter space for magnetized fuel targets in inertial confinement fusion
journal, March 1983


Shock waves in a Z-pinch and the formation of high energy density plasma
journal, December 2012

  • Rahman, H. U.; Wessel, F. J.; Ney, P.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4769264

High yield inertial confinement fusion target design for a z -pinch-driven hohlraum
journal, May 1999

  • Hammer, James H.; Tabak, Max; Wilks, Scott C.
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873464

Stability enhancement of a low initial density hollow gas‐puff z pinch by e beam preionization
journal, February 1987

  • Ruden, E.; Rahman, H. U.; Fisher, A.
  • Journal of Applied Physics, Vol. 61, Issue 4
  • DOI: 10.1063/1.338109

High-gain, low-intensity ICF targets for a charged-particle beam fusion driver
journal, January 1981


Staged Z Pinch
journal, January 1995

  • Rahman, H. U.; Wessel, F. J.; Rostoker, N.
  • Physical Review Letters, Vol. 74, Issue 5, p. 714-717
  • DOI: 10.1103/PhysRevLett.74.714

Staged Z pinch for controlled fusion
journal, February 2001

  • Ney, P.; Rahman, H. U.; Wessel, F. J.
  • Physics of Plasmas, Vol. 8, Issue 2
  • DOI: 10.1063/1.1339230

Fusion in a Staged <inline-formula> <tex-math notation="LaTeX">$Z$ </tex-math></inline-formula>-Pinch
journal, August 2015

  • Wessel, Frank J.; Ur-Rahman, Hafiz; Ney, Paul
  • IEEE Transactions on Plasma Science, Vol. 43, Issue 8
  • DOI: 10.1109/TPS.2015.2433796

Evidence of Stabilization in the Z -Pinch
journal, October 2001


Measurements of Magneto-Rayleigh-Taylor Instability Growth during the Implosion of Initially Solid Al Tubes Driven by the 20-MA, 100-ns Z Facility
journal, October 2010


The physics of fast Z pinches
journal, January 2000


Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories
journal, December 2012

  • Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.
  • IEEE Transactions on Plasma Science, Vol. 40, Issue 12
  • DOI: 10.1109/TPS.2012.2223488

High-Gain Magnetized Inertial Fusion
journal, January 2012


Pulsed-power-driven high energy density physics and inertial confinement fusion research
journal, May 2005

  • Matzen, M. Keith; Sweeney, M. A.; Adams, R. G.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1891746

Some Criteria for a Power Producing Thermonuclear Reactor
journal, January 1957


Rayleigh-Taylor Instabilities of a Collapsing Cylindrical Shell in a Magnetic Field
journal, January 1962