skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mitochondrial HMG to CoA synthase (mHS): cDNA cloning in human, mouse and C. elegans, mapping to human chromosome 1p12-13 and partial human genomic cloning

Journal Article · · American Journal of Human Genetics
OSTI ID:133818
; ;  [1]
  1. Hopital Sainte-Justine, Montreal, Quebec (Canada)

mHS catalyzes the rate-limiting first step of ketogenesis in the liver. A cytoplasmic HS isozyme, encoded by another gene, catalyzes an early step in cholesterol synthesis. Starting from a rat mHS cDNA obtained by RT-PCR from the published rat cDNA sequence, we obtained and sequenced human and mouse cDNAs spanning the entire coding sequence of natural human and mouse mHS, as well as sequencing C. elegans HS-like cDNA. Consensus sequences for 3 mitochondrial and 4 cytoplasmic HSs were created and compared to invertebrate HS sequences. We found high conversation in the active site and at other regions presumably important for HS function. We mapped the mHS locus, HMGCS2 by in situ hybridization to chromosome 1P12-13, in contrast to the human cHS locus (HMGCS1) known to be on chromosome 5p13. Comparative mapping results suggest that these two chromosomal regions may be contiguous in other species, constant with a recent gene duplication event. Furthermore, we have characterized a human genomic mHS subclone containing 4 mHS exons, and found the position of all splice junctions to be identical to that of the hamster cHS gene except for one site in the 3{prime} nontranslated region. We calculate that the mHS and cHS genes were derived from a common ancestor 400-700 Myrs ago, implying that ketogenesis from fat may have become possible around the time of emergence of vertebrates ({approximately}500 Myr ago). Ketogenesis has evolved into an important pathway of energy metabolism, and we predict the mHS deficiency may prove to be responsible for some as yet explained cases of Reye-like syndromes in humans. This hypothesis can now be tested at the molecular level without the necessity of obtaining hepatic tissue.

OSTI ID:
133818
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-0551
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English