Rapid identification of chromosomal rearrangements by PRINS technique
- CNRS, Montpellier (France); and others
Chromosomal rearrangements contribute significantly to human reproductive failure, malformation/mental retardation syndromes and carcinogenesis. The variety of structural rearrangements is almost infinite and an identification by conventional cytogenetics is often labor intensive and may remain doubtful. Recent advances in molecular cytogenetics have provided new tools for detecting chromosomal abnormalities. The fluorescence in situ hybridization (FISH) procedure is actually the most employed technique and has led to numerous clinical applications. However, techniques required to produce suitable probes are time consuming and not accessible to all cytogenetics laboratories. The PRimed In Situ labeling (PRINS) method provides an alternate way for in situ chromosome screening. In this procedure, the chromosomal detection is performed by in situ annealing of a specific primer and subsequent primer extension by a Taq DNA polymerase in the presence of labeled nucleotides. Application of PRINS in clinical diagnosis is still limited. We have developed a semi-automatic PRINS protocol and used it to identify the origin of several chromosomal abnormalities. We report here the results of studies of three structural rearrangements: a translocation t(21;21), a supernumerary ring marker chromosome 18 and a complex chromosome 13 mosaicism involving a 13;13 Robertsonian translocation and a ring chromosome 13.
- OSTI ID:
- 133739
- Report Number(s):
- CONF-941009--
- Journal Information:
- American Journal of Human Genetics, Journal Name: American Journal of Human Genetics Journal Issue: Suppl.3 Vol. 55; ISSN AJHGAG; ISSN 0002-9297
- Country of Publication:
- United States
- Language:
- English
Similar Records
Robertsonian (15q;15q) translocation in a child with Angelman syndrome: Evidence of uniparental disomy
Uniparental disomy analysis in carriers of balanced chromosome rearrangements