skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators

Abstract

We report on the calibration and use of fast fiber-optic (FO) beam loss monitors (BLMs) in the Advanced Photon Source storage ring (SR). A superconducting undulator prototype (SCU0) has been operating in SR Sector 6 (“ID6”) since the beginning of CY2013, and another undulator SCU1 (a 1.1-m length undulator that is three times the length of SCU0) is scheduled for installation in Sector 1 (“ID1”) in 2015. The SCU0 main coil often quenches during beam dumps. MARS simulations have shown that relatively small beam loss (<1 nC) can lead to temperature excursions sufficient to cause quenchingwhen the SCU0windings are near critical current. To characterize local beam losses, high-purity fused-silica FO cables were installed in ID6 on the SCU0 chamber transitions and in ID1 where SCU1 will be installed. These BLMs aid in the search for operating modes that protect the SCU structures from beam-loss-induced quenching. In this paper, we describe the BLM calibration process that included deliberate beam dumps at locations of BLMs. We also compare beam dump events where SCU0 did and did not quench.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1335931
DOE Contract Number:
AC02-06CH11357
Resource Type:
Conference
Resource Relation:
Conference: 6th International Particle Accelerator Conference (IPAC 2015), 05/03/15 - 05/08/15, Richmond, VA
Country of Publication:
United States
Language:
English

Citation Formats

Dooling, J., Harkay, K., Ivanyushenkov, Y., Sajaev, V., Xiao, A., and Vella, Andrea K.. Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators. United States: N. p., 2015. Web.
Dooling, J., Harkay, K., Ivanyushenkov, Y., Sajaev, V., Xiao, A., & Vella, Andrea K.. Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators. United States.
Dooling, J., Harkay, K., Ivanyushenkov, Y., Sajaev, V., Xiao, A., and Vella, Andrea K.. Thu . "Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators". United States. doi:.
@article{osti_1335931,
title = {Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators},
author = {Dooling, J. and Harkay, K. and Ivanyushenkov, Y. and Sajaev, V. and Xiao, A. and Vella, Andrea K.},
abstractNote = {We report on the calibration and use of fast fiber-optic (FO) beam loss monitors (BLMs) in the Advanced Photon Source storage ring (SR). A superconducting undulator prototype (SCU0) has been operating in SR Sector 6 (“ID6”) since the beginning of CY2013, and another undulator SCU1 (a 1.1-m length undulator that is three times the length of SCU0) is scheduled for installation in Sector 1 (“ID1”) in 2015. The SCU0 main coil often quenches during beam dumps. MARS simulations have shown that relatively small beam loss (<1 nC) can lead to temperature excursions sufficient to cause quenchingwhen the SCU0windings are near critical current. To characterize local beam losses, high-purity fused-silica FO cables were installed in ID6 on the SCU0 chamber transitions and in ID1 where SCU1 will be installed. These BLMs aid in the search for operating modes that protect the SCU structures from beam-loss-induced quenching. In this paper, we describe the BLM calibration process that included deliberate beam dumps at locations of BLMs. We also compare beam dump events where SCU0 did and did not quench.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jan 01 00:00:00 EST 2015},
month = {Thu Jan 01 00:00:00 EST 2015}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016more » and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.« less
  • Development of superconducting undulator (SCU) technology continues at the Advanced Photon Source (APS). The experience of building and successful operating the first short-length, 16-mm period length superconducting undulator SCU0 paved the way for a 1-m long, 18-mm period device— SCU18-1— which has been in operation since May 2015. The APS SCU team has also built and tested a 1.5-m long, 21-mm period length undulator as a part of the LCLS SCU R&D program, aimed at demonstration of SCU technology availability for free electron lasers. This undulator successfully achieved all the requirements including a phase error of 5° RMS. Our teammore » has recently completed one more 1-m long, 18-mm period length undulator— SCU18-2— that is replacing the SCU0. We are also working on a helical SCU for the APS. The status of these projects will be presented.« less
  • The beam position monitors (BPMs) play a critically important role in commissioning and operation of accelerators. Accurate determination of the offsets relative to the magnetic axis and sensitivities of individual BPMs is thus needed. We will describe in this paper the schemes for calibrating all of the 360 BPMs for sensitivity and offset in the 7-GeV Advanced Photon Source (APS) storage ring and the results. For the sensitivity calibration, a 2-dimensional map of the BPM response in the aluminum vacuum chamber is obtained theoretically, which is combined with the measured nonlinear response of the BPM electronics. A set of 2-dimensionalmore » polynomial coefficients is then obtained to approximate the result analytically. The offset calibration of the BPMs is done relative to the magnetic axis of the quadrupoles using the beam. This avoids the problem arising from various mechanical sources as well as the offset in the processing electronics. The measurement results for the resolution and long-term drift of the BPM electronics shows 0.06-{mu}m/{radical}Hz resolution and 2-{mu}m/hr drift over a period of 1.5 hrs.« less
  • In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields inmore » permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.« less
  • A beamline has been assembled with the ANL Chemistry Division linac (20-MeV e[sup [minus]] beam with FWHM of 20 ps) to test the effectiveness of damping techniques of the APS storage ring single-cell cavity. The beamline consists of two sections---the beam collimating section and the cavity measurement section---separated by two single [ital Al] foil windows, allowing the beam to propagate on- and off-axis of the cavity. The beam diagnostics include a beam position monitor, integrating current transformers, fluorescent screens, and a Faraday cup. The EPICS (Experimental Physics and Industrial Control System) is used for beamline control, monitoring, and data acquisition.more » The diagnostic system used for beam image capture and analysis is PV WAVE. The cavity was excited by the electron beam to investigate the HOMs. The HOMs were measured when the cavity was unloaded as well as loaded into the waveguide system. An rf cavity was also tested with and without various types of dampers. The HOM measurements were made with H-loops and E-probes. The spectral analysis of the HOMs is discussed and compared with both the bead-perturbation method and the computer calculation.« less