skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Implementation of the direct S ( α , β ) method in the KENO Monte Carlo code

Journal Article · · Annals of Nuclear Energy (Oxford)
 [1];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States)

The Monte Carlo code KENO contains thermal scattering data for a wide variety of thermal moderators. These data are processed from Evaluated Nuclear Data Files (ENDF) by AMPX and stored as double differential probability distribution functions. The method examined in this study uses S(α,β) probability distribution functions derived from the ENDF data files directly instead of being converted to double differential cross sections. This allows the size of the cross section data on the disk to be reduced substantially amount. KENO has also been updated to allow interpolation in temperature on these data so that problems can be run at any temperature. Results are shown for several simplified problems for a variety of moderators. In addition, benchmark models based on the KRITZ reactor in Sweden were run, and the results are compared with the previous versions of KENO without the direct S(α,β) method. Results from the direct S(α,β) method compare favorably with the original results obtained using the double differential cross sections. Finally, sampling the data increases the run-time of the Monte Carlo calculation, but memory usage is decreased substantially.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC05-00OR22725
OSTI ID:
1335339
Alternate ID(s):
OSTI ID: 1550671
Journal Information:
Annals of Nuclear Energy (Oxford), Vol. 101; ISSN 0306-4549
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science