skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accelerated testing of module-level power electronics for long-term reliability

Journal Article · · IEEE Journal of Photovoltaics
 [1];  [2];  [3];  [3];  [3]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. TUV Rheinland PTL, Tempe, AZ (United States); Arizona State Univ., Mesa, AZ (United States)
  3. Arizona State Univ., Mesa, AZ (United States)

This work has applied a suite of long-term-reliability accelerated tests to a variety of module-level power electronics (MLPE) devices (such as microinverters and optimizers) from five different manufacturers. This dataset is one of the first (only the paper by Parker et al. entitled “Dominant factors affecting reliability of alternating current photovoltaic modules,” in Proc. 42nd IEEE Photovoltaic Spec. Conf., 2015, is reported for reliability testing in the literature), as well as the largest, experimental sets in public literature, both in the sample size (five manufacturers including both dc/dc and dc/ac units and 20 units for each test) and the number of experiments (six different experimental test conditions) for MLPE devices. The accelerated stress tests (thermal cycling test per IEC 61215 profile, damp heat test per IEC 61215 profile, and static temperature tests at 100 and 125 °C) were performed under powered and unpowered conditions. The first independent long-term experimental data regarding damp heat and grid transient testing, as well as the longest term (>9 month) testing of MLPE units reported in the literature for thermal cycling and high-temperature operating life, are included in these experiments. Additionally, this work is the first to show in situ power measurements, as well as periodic efficiency measurements over a series of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. Lastly, the result of this testing highlights the performance of MLPE units under the application of several accelerated environmental stressors.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
Grant/Contract Number:
AC04-94AL85000
OSTI ID:
1333376
Report Number(s):
SAND2016-7976J; 646674
Journal Information:
IEEE Journal of Photovoltaics, Journal Name: IEEE Journal of Photovoltaics; ISSN 2156-3381
Publisher:
IEEECopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Cited By (2)

Review on Building-Integrated Photovoltaics Electrical System Requirements and Module-Integrated Converter Recommendations journal April 2019
Advanced MPPT Algorithm for Distributed Photovoltaic Systems journal September 2019