skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Narrowing the DiGeorge Region (DGCR) using DGS-VCFS associated translocation breakpoints

Journal Article · · American Journal of Human Genetics
OSTI ID:133295
; ;  [1]
  1. Children`s Hospital of Philadelphia, PA (United States); and others

The initial evidence linking 22q11 with DiGeorge syndrome (DGS) came from identification of DGS patients with unbalanced translocations resulting in loss of 22pter{r_arrow}q11. Molecular detection of 22q11.2 deletions in over 85% of our DGS and VCFS patient population confirms the role of 22q11 haploinsufficiency in the etiology of these two disorders. In the present study, DGS/VCFS-associated translocations are used to further refine the DGS minimal critical region. We obtained previously described cell lines: GM5878 [t(10;22)], GM5401 [t(4;22)], GM0980 [t(11;22)], and LGL6012 [t(20;22)]. Lymphoblastoid cell lines were established from two new unbalanced translocations, [t(15;22)(p11;q11)] and [t(12;22)(p13.31;q11.2)] and from a family with balanced and unbalanced forms of a t(X;22)(p22.31;q11). All probands are missing 22pter{r_arrow}q11 and have mild dysmorphia, short stature, frequent infections and developmental delay. Cleft palate was also seen in the two sibs resulting from malsegregation of the t(X;22)mat. These seven breakpoints were positioned by FISH utilizing cosmids from 22q11.2. The cosmids include the loci D22S75 (N25), D22S66 (160b), and D22S259 (R32) which we have previously used to define the DGS/VCFS commonly deleted region. The t(12;22) and t(20;22) breakpoints map distal to R32. Four translocation breakpoints map between N25 and R32: CEN - N25 - t(15;22) - t(11;22) - t(10;22) - 160b - t(4;22) - R32 - TEL. The t(X;22) breakpoint lies between the proximal flanking locus D22S36 (pH11) and N25, suggesting that genes critical to the phenotype may lie between these markers. However, the der(X) is inactivated in both sibs, raising the possibility that spreading of inactivation to the translocated, 22-derived segment may silence gene(s) distal to the breakpoint. Thus, the DGCR has been narrowed to a region between D22S36 and the t(15;22) breakpoint. This enables us to narrow the search for the critical gene(s) deleted in patients with DGS and VCFS.

OSTI ID:
133295
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-0022
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English