Time Series Discord Detection in Medical Data using a Parallel Relational Database [PowerPoint]
Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithms on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- WFO
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1331749
- Report Number(s):
- SAND2015-9678C; 607659
- Country of Publication:
- United States
- Language:
- English
Similar Records
Time Series Discord Detection in Medical Data using a Parallel Relational Database
Evaluating parallel relational databases for medical data analysis.
Evaluation of a computer based medical diagnostic/information system for nuclear submarines
Conference
·
Thu Oct 01 00:00:00 EDT 2015
·
OSTI ID:1337980
Evaluating parallel relational databases for medical data analysis.
Technical Report
·
Wed Feb 29 19:00:00 EST 2012
·
OSTI ID:1039004
Evaluation of a computer based medical diagnostic/information system for nuclear submarines
Conference
·
Wed Oct 31 23:00:00 EST 1979
·
OSTI ID:5138035