skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods for Finding Legacy Wells in Residential and Commercial Areas

Abstract

In 1919, the enthusiasm surrounding a short-lived gas play in Versailles Borough, Pennsylvania resulted in the drilling of many needless wells. The legacy of this activity exists today in the form of abandoned, unplugged gas wells that are a continuing source of fugitive methane in the midst of a residential and commercial area. Flammable concentrations of methane have been detected near building foundations, which have forced people from their homes and businesses until methane concentrations decreased. Despite mitigation efforts, methane problems persist and have caused some buildings to be permanently abandoned and demolished. This paper describes the use of magnetic and methane sensing methods by the National Energy Technology Laboratory (NETL) to locate abandoned gas wells in Versailles Borough where site access is limited and existing infrastructure can interfere. Here, wells are located between closely spaced houses and beneath buildings and parking lots. Wells are seldom visible, often because wellheads and internal casing strings have been removed, and external casing has been cut off below ground level. The magnetic survey of Versailles Borough identified 53 strong, monopole magnetic anomalies that are presumed to indicate the locations of steel-cased wells. This hypothesis was tested by excavating the location of one strong,more » monopole magnetic anomaly that was within an area of anomalous methane concentrations. The excavation uncovered an unplugged gas well that was within 0.2 m of the location of the maximum magnetic signal. Truck-mounted methane surveys of Versailles Borough detected numerous methane anomalies that were useful for narrowing search areas. Methane sources identified during truck-mounted surveys included strong methane sources such as sewers and methane mitigation vents. However, inconsistent wind direction and speed, especially between buildings, made locating weaker methane sources (such as leaking wells) difficult. Walking surveys with the methane detector mounted on a cart or wagon were more effective for detecting leaking wells because the instrument’s air inlet was near the ground where: 1) the methane concentration from subsurface sources (including wells) was a maximum, and 2) there was less displacement of methane anomalies from methane sources by air currents. The Versailles Borough survey found 15 methane anomalies that coincided with the location of well-type magnetic anomalies; the methane sources for these anomalies were assumed to be leaking wells. For abandoned well locations where the wellhead and all casing strings have been removed and there is no magnetic anomaly, leaking wellbores can sometimes be detected by methane surveys. Unlike magnetic anomalies, methane anomalies can be: 1) ephemeral, 2) significantly displaced from the well location, and 3) from non-well sources that cannot be discriminated without isotopic analysis. If methane surveys are used for well location, the air inlet to the instrument should be kept as close to the ground as possible to minimize the likelihood of detecting methane from distant, wind-blown sources.« less

Authors:
 [1];  [1]
  1. National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States). In-house Research
Sponsoring Org.:
USDOE
OSTI Identifier:
1330215
Report Number(s):
NETL-PUB-20581; NETL-TRS-5-2016
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; legacy wells

Citation Formats

Hammack, Richard W., and Veloski, Garret A. Methods for Finding Legacy Wells in Residential and Commercial Areas. United States: N. p., 2016. Web. doi:10.2172/1330215.
Hammack, Richard W., & Veloski, Garret A. Methods for Finding Legacy Wells in Residential and Commercial Areas. United States. doi:10.2172/1330215.
Hammack, Richard W., and Veloski, Garret A. Thu . "Methods for Finding Legacy Wells in Residential and Commercial Areas". United States. doi:10.2172/1330215. https://www.osti.gov/servlets/purl/1330215.
@article{osti_1330215,
title = {Methods for Finding Legacy Wells in Residential and Commercial Areas},
author = {Hammack, Richard W. and Veloski, Garret A.},
abstractNote = {In 1919, the enthusiasm surrounding a short-lived gas play in Versailles Borough, Pennsylvania resulted in the drilling of many needless wells. The legacy of this activity exists today in the form of abandoned, unplugged gas wells that are a continuing source of fugitive methane in the midst of a residential and commercial area. Flammable concentrations of methane have been detected near building foundations, which have forced people from their homes and businesses until methane concentrations decreased. Despite mitigation efforts, methane problems persist and have caused some buildings to be permanently abandoned and demolished. This paper describes the use of magnetic and methane sensing methods by the National Energy Technology Laboratory (NETL) to locate abandoned gas wells in Versailles Borough where site access is limited and existing infrastructure can interfere. Here, wells are located between closely spaced houses and beneath buildings and parking lots. Wells are seldom visible, often because wellheads and internal casing strings have been removed, and external casing has been cut off below ground level. The magnetic survey of Versailles Borough identified 53 strong, monopole magnetic anomalies that are presumed to indicate the locations of steel-cased wells. This hypothesis was tested by excavating the location of one strong, monopole magnetic anomaly that was within an area of anomalous methane concentrations. The excavation uncovered an unplugged gas well that was within 0.2 m of the location of the maximum magnetic signal. Truck-mounted methane surveys of Versailles Borough detected numerous methane anomalies that were useful for narrowing search areas. Methane sources identified during truck-mounted surveys included strong methane sources such as sewers and methane mitigation vents. However, inconsistent wind direction and speed, especially between buildings, made locating weaker methane sources (such as leaking wells) difficult. Walking surveys with the methane detector mounted on a cart or wagon were more effective for detecting leaking wells because the instrument’s air inlet was near the ground where: 1) the methane concentration from subsurface sources (including wells) was a maximum, and 2) there was less displacement of methane anomalies from methane sources by air currents. The Versailles Borough survey found 15 methane anomalies that coincided with the location of well-type magnetic anomalies; the methane sources for these anomalies were assumed to be leaking wells. For abandoned well locations where the wellhead and all casing strings have been removed and there is no magnetic anomaly, leaking wellbores can sometimes be detected by methane surveys. Unlike magnetic anomalies, methane anomalies can be: 1) ephemeral, 2) significantly displaced from the well location, and 3) from non-well sources that cannot be discriminated without isotopic analysis. If methane surveys are used for well location, the air inlet to the instrument should be kept as close to the ground as possible to minimize the likelihood of detecting methane from distant, wind-blown sources.},
doi = {10.2172/1330215},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jun 16 00:00:00 EDT 2016},
month = {Thu Jun 16 00:00:00 EDT 2016}
}

Technical Report:

Save / Share: