skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite

Abstract

This project was part of a collaborative campaign, including the participation of scientists from seven research groups as part of the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London to study wintertime sources of urban particulate matter. The UW contribution by PI Thornton’s group was to make the first deployment of a chemical ionization mass spectrometer instrument (MOVI-CI-ToFMS) to measure both particle and gas phase organic acids. The new instrument ran nearly continuously during the ClearfLo WINTER IOP at the Detling site, producing a first-ever data set of molecular composition information that can be used for source apportionment and process studies. The UW group published a paper in Environmental Science and Technology and contributed to another (Bohnenstengel et al BAMS 2015) detailing a direct molecular connection between biomass/biofuel burning particles and aerosol light absorption. The ES&T paper (Mohr, et al ES&T 2013) has received 42 citations in just 3 years indicative of its significant impact on the field. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal.

Authors:
 [1];  [2]
  1. Univ. of Washington, Seattle, WA (United States)
  2. Aerodyne Research, Billerica, MA (United States)
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1326684
Report Number(s):
DOE-UW-SC0006036
DOE Contract Number:
SC0006036
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; aerosols, climate, biomass burning, biofuel

Citation Formats

Thornton, Joel A., and Worsnop, Douglas. COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite. United States: N. p., 2016. Web. doi:10.2172/1326684.
Thornton, Joel A., & Worsnop, Douglas. COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite. United States. doi:10.2172/1326684.
Thornton, Joel A., and Worsnop, Douglas. Thu . "COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite". United States. doi:10.2172/1326684. https://www.osti.gov/servlets/purl/1326684.
@article{osti_1326684,
title = {COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite},
author = {Thornton, Joel A. and Worsnop, Douglas},
abstractNote = {This project was part of a collaborative campaign, including the participation of scientists from seven research groups as part of the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London to study wintertime sources of urban particulate matter. The UW contribution by PI Thornton’s group was to make the first deployment of a chemical ionization mass spectrometer instrument (MOVI-CI-ToFMS) to measure both particle and gas phase organic acids. The new instrument ran nearly continuously during the ClearfLo WINTER IOP at the Detling site, producing a first-ever data set of molecular composition information that can be used for source apportionment and process studies. The UW group published a paper in Environmental Science and Technology and contributed to another (Bohnenstengel et al BAMS 2015) detailing a direct molecular connection between biomass/biofuel burning particles and aerosol light absorption. The ES&T paper (Mohr, et al ES&T 2013) has received 42 citations in just 3 years indicative of its significant impact on the field. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal.},
doi = {10.2172/1326684},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Sep 22 00:00:00 EDT 2016},
month = {Thu Sep 22 00:00:00 EDT 2016}
}

Technical Report:

Save / Share:
  • This project funded the participation of scientists from seven research groups, running more than thirty instruments, in the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London. The primary science questions for the ClearfLo Winter IOP were, 1) what is the urban increment of particulate matter (PM) and other pollutants in the greater London area, and, 2) what is the contribution of solid fuel use for home heating to wintertime PM? An additional motivation for the Detling measurements was the question ofmore » whether coatings on black carbon particles enhance absorption. The following four key accomplishments have been identified so far: 1) Chemical, physical and optical characterization of PM from local and regional sources (Figures 2, 4, 5 and 6). 2) Measurement of urban increment in particulate matter and gases in London (Figure 3). 3) Measurement of optical properties and chemical composition of coatings on black carbon containing particles indicates absorption enhancement. 4) First deployment of chemical ionization instrument (MOVI-CI-TOFMS) to measure both particle-phase and gas-phase organic acids. (See final report from Joel Thornton, University of Washington, for details.) Analysis of the large dataset acquired in Detling is ongoing and will yield further key accomplishments. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal. The measurement of absorption enhancement by coatings on black carbon will contribute to improved modeling of the direct radiative properties of PM.« less
  • The Two Column Aerosol Project (TCAP) investigated uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The University of Colorado 2D-MAX-DOAS and LED-CE-DOAS instruments were collocated with DOE’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) during the TCAP-1 campaign at Cape Cod, MA (1 July to 13 August 2012). We have performed atmospheric radiation closure studies to evaluate the use of a novel parameter, i.e., the Raman Scattering Probability (RSP). We have performed first measurements of RSP almucantar scans, and measure RSP in spectra of scattered solar photons at 350nm and 430nm.more » Radiative Transfer Modelling of RSP demonstrate that the RSP measurement is maximally sensitive to infer even extremely low aerosol optical depth (AOD < 0.01) reliably by DOAS at low solar relative azimuth angles. We further assess the role of elevated aerosol layers on near surface observations of oxygen collision complexes, O 2-O 2. Elevated aerosol layers modify the near surface absorption of O 2-O 2 and RSP. The combination of RSP and O 2-O 2 holds largely unexplored potential to better constrain elevated aerosol layers and measure column aerosol optical properties such as aerosol effective radius, extinction, aerosol phase functions and refractive indices. The TCAP deployment also provides a time series of reactive trace gas vertical profiles, i.e., nitrogen dioxide (NO 2) and glyoxal (C 2H 2O 2), which are measured simultaneously with the aerosol optical properties by DOAS. NO 2 is an important precursor for ozone (O 3) that modifies oxidative capacity. Glyoxal modifies oxidative capacity and is a source for brown carbon by forming secondary organic aerosol (SOA) via multiphase reactions in aerosol and cloud water. We have performed field measurements of these gases during TCAP, and conducted laboratory experiments to quantify for the first time the Setschenow salting constant, KS, of glyoxal in sulfate aerosols. Knowledge about KS is prerequisite to predict how increasing sulfate concentrations since pre-industrial times have modified the formation of SOA from biogenic gases in atmospheric models.« less
  • This work investigated the formation and evolution of organic aerosols (OA) arising from anthropogenic and biogenic sources in a framework that combined state-of-the-science process and regional modeling, and their evaluation against advanced and emerging field measurements. Although OA are the dominant constituents of submicron particles, our understanding of their atmospheric lifecycle is limited, and current models fail to describe the observed amounts and properties of chemically formed secondary organic aerosols (SOA), leaving large uncertainties on the effects of SOA on climate. Our work has provided novel modeling constraints on sources, formation, aging and removal of SOA by investigating in particularmore » (i) the contribution of trash burning emissions to OA levels in a megacity, (ii) the contribution of glyoxal to SOA formation in aqueous particles in California during CARES/CalNex and over the continental U.S., (iii) SOA formation and regional growth over a pine forest in Colorado and its sensitivity to anthropogenic NOx levels during BEACHON, and the sensitivity of SOA to (iv) the sunlight exposure during its atmospheric lifetime, and to (v) changes in solubility and removal of organic vapors in the urban plume (MILAGRO, Mexico City), and over the continental U.S.. We have also developed a parameterization of water solubility for condensable organic gases produced from major anthropogenic and biogenic precursors based on explicit chemical modeling, and made it available to the wider community. This work used for the first time constraints from the explicit model GECKO-A to improve SOA representation in 3D regional models such as WRF-Chem.« less
  • Originally, the main role of the P.I. (Sungsu Park) in this project was to improve the treatment of cloud microphysics in the CAM5 shallow and deep convection scheme. During the progress of the project, however, the main research theme was changed to develop a new unified convection scheme (so called, UNICON) with the permission of the program manager.
  • The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated newmore » parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.« less