skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores

Abstract

The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in × 2 in) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS and 40.2% with BG) and the highest for glass (92.8% with BAS and 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG; values increased as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BASmore » at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent article.« less

Authors:
 [1];  [2];  [1];  [2];  [3];  [2]
  1. Applied Statistics and Computational Sciences, Pacific Northwest National Laboratory, Richland WA USA
  2. Chemical and Biological Signature Science Group, Pacific Northwest National Laboratory, Richland WA USA
  3. Analytical Chemistry of Nuclear Materials, Pacific Northwest National Laboratory, Richland WA USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1306753
Report Number(s):
PNNL-SA-107304
Journal ID: ISSN 1364-5072; 400904120
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Microbiology; Journal Volume: 121; Journal Issue: 1
Country of Publication:
United States
Language:
English
Subject:
Bacillus anthracis; Low concentrations; Swab sampling; False negative rate; Recovery efficiency; Limit of detection

Citation Formats

Piepel, G. F., Deatherage Kaiser, B. L., Amidan, B. G., Sydor, M. A., Barrett, C. A., and Hutchison, J. R.. False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores. United States: N. p., 2016. Web. doi:10.1111/jam.13128.
Piepel, G. F., Deatherage Kaiser, B. L., Amidan, B. G., Sydor, M. A., Barrett, C. A., & Hutchison, J. R.. False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores. United States. doi:10.1111/jam.13128.
Piepel, G. F., Deatherage Kaiser, B. L., Amidan, B. G., Sydor, M. A., Barrett, C. A., and Hutchison, J. R.. 2016. "False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores". United States. doi:10.1111/jam.13128.
@article{osti_1306753,
title = {False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores},
author = {Piepel, G. F. and Deatherage Kaiser, B. L. and Amidan, B. G. and Sydor, M. A. and Barrett, C. A. and Hutchison, J. R.},
abstractNote = {The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in × 2 in) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS and 40.2% with BG) and the highest for glass (92.8% with BAS and 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG; values increased as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent article.},
doi = {10.1111/jam.13128},
journal = {Journal of Applied Microbiology},
number = 1,
volume = 121,
place = {United States},
year = 2016,
month = 5
}
  • The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in. × 2 in.) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest formore » vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm 2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent report.« less
  • The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in × 2 in) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest formore » vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results are discussed in a separate report.« less
  • This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completingmore » gaps in the available information on the performance of macrofoam swab sampling at low concentrations.« less
  • This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gapsmore » in the available information on the performance of macrofoam-swab sampling at low concentrations.« less
  • Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, andmore » plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm²). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD₉₅ was lowest for glass (0.429 CFU/cm² with BAS and 0.341 CFU/cm² with BG) and highest for vinyl tile (0.919 CFU/cm² with BAS and 0.917 CFU/cm² with BG). These mRV-PCR LOD₉₅ values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm² and BG: 0.820 to 1.489 CFU/cm²). The FNR and LOD₉₅ values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.« less