skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

Abstract

Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, the inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

Authors:
 [1];  [1];  [2];  [1];  [3];  [4];  [5];  [6];  [5];  [5];  [7];  [1];  [4];  [8];  [9];  [1];  [4]; ORCiD logo [3];  [3];  [3]
  1. STFC Rutherford Appleton Lab., Didcot (United Kingdom)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); ELI Beamlines, Prague (Czech Republic); Univ. of Nevada, Reno, NV (United States)
  3. Univ. of York, Heslington York (United Kingdom)
  4. Queen's Univ. Belfast, Belfast (United Kingdom)
  5. Instituto Nazionale di Ottica, Pisa (Italy)
  6. Univ. of Oxford, Oxford (United Kingdom)
  7. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); ELI Beamlines, Prague (Czech Republic); Instituto Nazionale di Ottica, Pisa (Italy)
  8. Univ. of Nevada, Reno, NV (United States)
  9. STFC Rutherford Appleton Lab., Didcot (United Kingdom); Univ. of York, Heslington York (United Kingdom)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
Science and Technology Facilities Council (STFC) (United Kingdom); USDOE
OSTI Identifier:
1304822
Report Number(s):
LA-UR-14-21902
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Booth, N., Robinson, A. P. L., Hakel, P., Clarke, R. J., Dance, R. J., Doria, D., Gizzi, L. A., Gregori, G., Koester, P., Labate, L., Levato, T., Li, B., Makita, M., Mancini, R. C., Pasley, J., Rajeev, P. P., Riley, D., Wagenaars, E., Waugh, J. N., and Woolsey, N. C. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs. United States: N. p., 2015. Web. doi:10.1038/ncomms9742.
Booth, N., Robinson, A. P. L., Hakel, P., Clarke, R. J., Dance, R. J., Doria, D., Gizzi, L. A., Gregori, G., Koester, P., Labate, L., Levato, T., Li, B., Makita, M., Mancini, R. C., Pasley, J., Rajeev, P. P., Riley, D., Wagenaars, E., Waugh, J. N., & Woolsey, N. C. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs. United States. doi:10.1038/ncomms9742.
Booth, N., Robinson, A. P. L., Hakel, P., Clarke, R. J., Dance, R. J., Doria, D., Gizzi, L. A., Gregori, G., Koester, P., Labate, L., Levato, T., Li, B., Makita, M., Mancini, R. C., Pasley, J., Rajeev, P. P., Riley, D., Wagenaars, E., Waugh, J. N., and Woolsey, N. C. Fri . "Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs". United States. doi:10.1038/ncomms9742. https://www.osti.gov/servlets/purl/1304822.
@article{osti_1304822,
title = {Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs},
author = {Booth, N. and Robinson, A. P. L. and Hakel, P. and Clarke, R. J. and Dance, R. J. and Doria, D. and Gizzi, L. A. and Gregori, G. and Koester, P. and Labate, L. and Levato, T. and Li, B. and Makita, M. and Mancini, R. C. and Pasley, J. and Rajeev, P. P. and Riley, D. and Wagenaars, E. and Waugh, J. N. and Woolsey, N. C.},
abstractNote = {Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, the inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.},
doi = {10.1038/ncomms9742},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 6,
place = {United States},
year = {2015},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Theory of Low-Mass Stars and Substellar Objects
journal, September 2000


The physical properties of extra-solar planets
journal, December 2009


Transport Phenomena in a Completely Ionized Gas
journal, March 1953


An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

Fast-electron transport in high-intensity short-pulse laser - solid experiments
journal, May 1997


Modelling electron transport for fast ignition
journal, November 2007


The science of brown dwarfs
journal, April 1993


An Equation of State for Low-Mass Stars and Giant Planets
journal, July 1995

  • Saumon, D.; Chabrier, G.; van Horn, H. M.
  • The Astrophysical Journal Supplement Series, Vol. 99
  • DOI: 10.1086/192204

Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers
journal, May 1999


Resistivity of a Simple Metal from Room Temperature to 10 6 K
journal, November 1988


Resistive Collimation of Electron Beams in Laser-Produced Plasmas
journal, July 2003


Annular Fast Electron Transport in Silicon Arising from Low-Temperature Resistivity
journal, August 2013


Electrical conductivity of dense copper and aluminum plasmas
journal, May 1998


Measurements of Electron Transport in Foils Irradiated with a Picosecond Time Scale Laser Pulse
journal, May 2011


Exploding aluminum wire expansion rate with 1–4.5 kA per wire
journal, May 2000

  • Sinars, D. B.; Shelkovenko, T. A.; Pikuz, S. A.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.873975

THE 0.8-14.5 μm SPECTRA OF MID-L TO MID-T DWARFS: DIAGNOSTICS OF EFFECTIVE TEMPERATURE, GRAIN SEDIMENTATION, GAS TRANSPORT, AND SURFACE GRAVITY
journal, August 2009


Guiding of Relativistic Electron Beams in Solid Targets by Resistively Controlled Magnetic Fields
journal, February 2009


Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas
journal, January 1997

  • Wilks, S. C.; Kruer, W. L.
  • IEEE Journal of Quantum Electronics, Vol. 33, Issue 11
  • DOI: 10.1109/3.641310

A study of picosecond laser–solid interactions up to 10 19 W cm −2
journal, February 1997

  • Beg, F. N.; Bell, A. R.; Dangor, A. E.
  • Physics of Plasmas, Vol. 4, Issue 2
  • DOI: 10.1063/1.872103

Hot-Electron Temperature and Laser-Light Absorption in Fast Ignition
journal, January 2009


Precision X-ray spectroscopy of intense laser-plasma interactions
journal, June 2011


    Works referencing / citing this record:

    Ambipolar field role in formation of electron distribution function in gas discharge plasma
    journal, November 2017