Materials Data on P2H12BrN7 by Materials Project
P2N7H12Br is alpha Niobium phosphide structured and crystallizes in the triclinic P-1 space group. The structure is zero-dimensional and consists of two hydrobromic acid molecules and two P2N7H12 clusters. In each P2N7H12 cluster, there are two inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four N3- atoms to form corner-sharing PN4 tetrahedra. There are a spread of P–N bond distances ranging from 1.60–1.67 Å. In the second P5+ site, P5+ is bonded to four N3- atoms to form corner-sharing PN4 tetrahedra. There are a spread of P–N bond distances ranging from 1.61–1.65 Å. There are seven inequivalent N3- sites. In the first N3- site, N3- is bonded in a distorted trigonal non-coplanar geometry to one P5+ and two H1+ atoms. There is one shorter (1.02 Å) and one longer (1.03 Å) N–H bond length. In the second N3- site, N3- is bonded in a trigonal planar geometry to one P5+ and two H1+ atoms. There is one shorter (1.02 Å) and one longer (1.03 Å) N–H bond length. In the third N3- site, N3- is bonded in a trigonal planar geometry to one P5+ and two H1+ atoms. Both N–H bond lengths are 1.02 Å. In the fourth N3- site, N3- is bonded in a distorted trigonal planar geometry to one P5+ and two H1+ atoms. There is one shorter (1.02 Å) and one longer (1.03 Å) N–H bond length. In the fifth N3- site, N3- is bonded in a trigonal planar geometry to one P5+ and two H1+ atoms. Both N–H bond lengths are 1.02 Å. In the sixth N3- site, N3- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the seventh N3- site, N3- is bonded in a distorted trigonal planar geometry to one P5+ and two H1+ atoms. There is one shorter (1.02 Å) and one longer (1.03 Å) N–H bond length. There are twelve inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the second H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the third H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the fourth H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the fifth H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the sixth H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the seventh H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the eighth H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the ninth H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the tenth H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the eleventh H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom. In the twelfth H1+ site, H1+ is bonded in a single-bond geometry to one N3- atom.
- Research Organization:
- LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- Contributing Organization:
- The Materials Project; MIT; UC Berkeley; Duke; U Louvain
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1291313
- Report Number(s):
- mp-758953
- Country of Publication:
- United States
- Language:
- English
Similar Records
Materials Data on P2H10SN6 by Materials Project
Materials Data on PHN2 by Materials Project