skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on H7BrO3 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1278423· OSTI ID:1278423

H2OH7O3H5(OBr)2 crystallizes in the triclinic P1 space group. The structure is zero-dimensional and consists of one water molecule, one H5(OBr)2 cluster, and one H7O3 cluster. In the H5(OBr)2 cluster, there are five inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a single-bond geometry to one O2- and one Br1- atom. The H–O bond length is 1.01 Å. The H–Br bond length is 2.10 Å. In the second H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the third H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.10 Å) and one longer (1.35 Å) H–O bond length. In the fourth H1+ site, H1+ is bonded in a single-bond geometry to one O2- and one Br1- atom. The H–O bond length is 1.01 Å. The H–Br bond length is 2.09 Å. In the fifth H1+ site, H1+ is bonded in a distorted single-bond geometry to one O2- atom. The H–O bond length is 1.01 Å. There are two inequivalent O2- sites. In the first O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the second O2- site, O2- is bonded in a trigonal planar geometry to three H1+ atoms. There are two inequivalent Br1- sites. In the first Br1- site, Br1- is bonded in a single-bond geometry to one H1+ atom. In the second Br1- site, Br1- is bonded in a distorted single-bond geometry to one H1+ atom. In the H7O3 cluster, there are seven inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the second H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the third H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the fourth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the fifth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. In the sixth H1+ site, H1+ is bonded in a distorted linear geometry to two O2- atoms. There is one shorter (1.02 Å) and one longer (1.59 Å) H–O bond length. In the seventh H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.12 Å) and one longer (1.33 Å) H–O bond length. There are three inequivalent O2- sites. In the first O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the second O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to three H1+ atoms. In the third O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1278423
Report Number(s):
mp-625583
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on H9BrO4 by Materials Project
Dataset · Thu Apr 30 00:00:00 EDT 2020 · OSTI ID:1278423

Materials Data on Sn4H26(Br4O5)3 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1278423

Materials Data on Sn4H26(Br4O5)3 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1278423