Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Materials Data on Li4Mo3O8 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1273344· OSTI ID:1273344
Li4Mo3O8 crystallizes in the trigonal R-3m space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six LiO6 octahedra and edges with six equivalent MoO6 octahedra. The corner-sharing octahedral tilt angles are 9°. There are three shorter (2.13 Å) and three longer (2.14 Å) Li–O bond lengths. In the second Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are one shorter (1.93 Å) and three longer (2.11 Å) Li–O bond lengths. In the third Li1+ site, Li1+ is bonded in a 4-coordinate geometry to four O2- atoms. There are one shorter (1.95 Å) and three longer (2.10 Å) Li–O bond lengths. In the fourth Li1+ site, Li1+ is bonded to six equivalent O2- atoms to form LiO6 octahedra that share corners with six equivalent LiO6 octahedra and edges with six equivalent MoO6 octahedra. The corner-sharing octahedral tilt angles are 9°. All Li–O bond lengths are 2.29 Å. In the fifth Li1+ site, Li1+ is bonded to six equivalent O2- atoms to form LiO6 octahedra that share corners with six equivalent LiO6 octahedra and edges with six equivalent MoO6 octahedra. The corner-sharing octahedral tilt angles are 9°. All Li–O bond lengths are 2.29 Å. Mo4+ is bonded to six O2- atoms to form MoO6 octahedra that share edges with four LiO6 octahedra and edges with four equivalent MoO6 octahedra. There are two shorter (2.08 Å) and four longer (2.09 Å) Mo–O bond lengths. There are four inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+ and two equivalent Mo4+ atoms to form OLi3Mo2 square pyramids that share corners with six OLi3Mo2 square pyramids, corners with three equivalent OLiMo3 trigonal pyramids, edges with six OLi3Mo2 square pyramids, and an edgeedge with one OLiMo3 trigonal pyramid. In the second O2- site, O2- is bonded to three Li1+ and two equivalent Mo4+ atoms to form OLi3Mo2 square pyramids that share corners with six OLi3Mo2 square pyramids, corners with three equivalent OLiMo3 trigonal pyramids, edges with six OLi3Mo2 square pyramids, and an edgeedge with one OLiMo3 trigonal pyramid. In the third O2- site, O2- is bonded to one Li1+ and three equivalent Mo4+ atoms to form distorted OLiMo3 trigonal pyramids that share corners with nine equivalent OLi3Mo2 square pyramids, corners with three equivalent OLiMo3 trigonal pyramids, and edges with three equivalent OLi3Mo2 square pyramids. In the fourth O2- site, O2- is bonded to one Li1+ and three equivalent Mo4+ atoms to form distorted OLiMo3 trigonal pyramids that share corners with nine equivalent OLi3Mo2 square pyramids, corners with three equivalent OLiMo3 trigonal pyramids, and edges with three equivalent OLi3Mo2 square pyramids.
Research Organization:
LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Organization:
The Materials Project; MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1273344
Report Number(s):
mp-566257
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on Li4Mo3O8 by Materials Project
Dataset · Sun May 03 00:00:00 EDT 2020 · OSTI ID:1284529

Materials Data on Li6Mo2O7 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1284546

Materials Data on Li2MoO3 by Materials Project
Dataset · Sun May 03 00:00:00 EDT 2020 · OSTI ID:1207108