skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on H21C6N2Cl3 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1272839· OSTI ID:1272839

C6N2H20ClHCl2 is Silicon tetrafluoride-derived structured and crystallizes in the monoclinic P2_1 space group. The structure is zero-dimensional and consists of two salzsaure salzsaure molecules and two C6N2H20Cl clusters. In each C6N2H20Cl cluster, there are six inequivalent C2- sites. In the first C2- site, C2- is bonded to one N3- and three H1+ atoms to form corner-sharing CH3N tetrahedra. The C–N bond length is 1.49 Å. There is one shorter (1.09 Å) and two longer (1.10 Å) C–H bond length. In the second C2- site, C2- is bonded to one N3- and three H1+ atoms to form corner-sharing CH3N tetrahedra. The C–N bond length is 1.49 Å. There is one shorter (1.09 Å) and two longer (1.10 Å) C–H bond length. In the third C2- site, C2- is bonded to one N3- and three H1+ atoms to form corner-sharing CH3N tetrahedra. The C–N bond length is 1.49 Å. There is one shorter (1.09 Å) and two longer (1.10 Å) C–H bond length. In the fourth C2- site, C2- is bonded to one N3- and three H1+ atoms to form corner-sharing CH3N tetrahedra. The C–N bond length is 1.49 Å. All C–H bond lengths are 1.10 Å. In the fifth C2- site, C2- is bonded to one N3- and three H1+ atoms to form corner-sharing CH3N tetrahedra. The C–N bond length is 1.49 Å. There is one shorter (1.09 Å) and two longer (1.10 Å) C–H bond length. In the sixth C2- site, C2- is bonded to one N3- and three H1+ atoms to form corner-sharing CH3N tetrahedra. The C–N bond length is 1.49 Å. There is one shorter (1.09 Å) and two longer (1.10 Å) C–H bond length. There are two inequivalent N3- sites. In the first N3- site, N3- is bonded in a distorted tetrahedral geometry to three C2- and one H1+ atom. The N–H bond length is 1.06 Å. In the second N3- site, N3- is bonded in a tetrahedral geometry to three C2- and one H1+ atom. The N–H bond length is 1.06 Å. There are twenty inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the second H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the third H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the fourth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the fifth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the sixth H1+ site, H1+ is bonded in a single-bond geometry to one N3- and one Cl1- atom. The H–Cl bond length is 2.09 Å. In the seventh H1+ site, H1+ is bonded in a single-bond geometry to one N3- and one Cl1- atom. The H–Cl bond length is 2.04 Å. In the eighth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the ninth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the tenth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the eleventh H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the twelfth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the thirteenth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the fourteenth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the fifteenth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the sixteenth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the seventeenth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the eighteenth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the nineteenth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. In the twentieth H1+ site, H1+ is bonded in a single-bond geometry to one C2- atom. Cl1- is bonded in a distorted L-shaped geometry to two H1+ atoms.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1272839
Report Number(s):
mp-759161
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on LaP2H44C14N7(Cl2O)2 by Materials Project
Dataset · Sat May 02 00:00:00 EDT 2020 · OSTI ID:1272839

Materials Data on ZrH27C8N2Cl5O2 by Materials Project
Dataset · Tue Aug 09 00:00:00 EDT 2016 · OSTI ID:1272839

Materials Data on AlH18C6N2Cl3 by Materials Project
Dataset · Thu Apr 30 00:00:00 EDT 2020 · OSTI ID:1272839