TOUGH2 model of the G-tunnel heater test
- Sandia National Lab., Albuquerque, NM (United States)
An experiment designed to observe water migration under non-isothermal conditions in welded tuff was performed in 1980 in the welded portion of the Grouse Canyon Member in the U12g tunnel (G-tunnel) at Rainier Mesa. Significant amounts of water were observed to migrate towards a heated hole bored into the welded tuff. The water migration was attributed to vapor phase diffusion, but other processes such as gravity driven flow were not considered and may have contributed significantly to the observed water migration. The modeling studies presented here address processes of water migration near heated regions in partially saturated tuff. The multiphase, non-isothermal numerical code TOUGH2 was used to model the G-Tunnel heater experiment. The numerical simulation consisted of 10 days of heating at 1000 W. Temperatures, liquid saturations, gas pressures, gas and liquid velocities, and vapor mass fractions were recorded to determine the processes affecting water migration. Results of the simulation indicated that water migration near heated tuffaceous rock involves a combination of processes. Gas-phase advection and diffusion transported water vapor that was evaporated near the heater toward outer regions. Water vapor condensed in cooler regions away from the heater, increasing the saturations. As liquid water accumulated in the heater borehole, capillary suction pulled some of the liquid toward the drier heated region while gravity drained some of the liquid away from the heater. In natural systems, high permeability fractures could mimic the role of the heater hole.
- OSTI ID:
- 127173
- Report Number(s):
- CONF-9504179--
- Country of Publication:
- United States
- Language:
- English
Similar Records
In-situ tuff water migration/heater experiment: experimental plan
Geology of the UE12t No. 3 vertical drill hole, area 12, Nevada Test Site