skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform

Journal Article · · Journal of Scientific Computing
 [1];  [2];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Arizona State Univ., Mesa, AZ (United States)

Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l1 regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l1 regularization terms. The Split Bregman Algorithm provides a fast explicit solution for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l1 regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l1 regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1265665
Journal Information:
Journal of Scientific Computing, Vol. 67, Issue 2; ISSN 0885-7474
Publisher:
Springer
Country of Publication:
United States
Language:
English