Mechanism of olefin production on Pt, Rh, and Pd catalysts
- Univ. of Minnesota, Minneapolis, MN (United States)
The partial oxidation of ethylene, propylene, and butylene in an autothermal reactor at atmospheric pressure with contact times less that {approximately}10 milliseconds leads to high selectivities to mono-olefins over Pt/Al{sub 2}O{sub 3}, synthesis gas over Rh/Al{sub 2}O{sub 3}, and rapid carbon deposition and deactivation over Pd/Al{sub 2}O{sub 3} at complete oxygen conversion and high alkane conversion. In all cases, thermodynamics predicts carbon deposition. We will show how the product distributions vary with choice of catalyst and reaction conditions. We will use an elementary step model based on surface reaction rates on the various metals obtained from the surface science literature to simulate these experimental results. The dominant reaction pathways on the different metals can be explained by the relative preference for {beta} elimination reactions on Pt, nearly even split between {alpha} and {beta} elimination on Rh, and rapid {alpha} elimination on Pd.
- OSTI ID:
- 126252
- Report Number(s):
- CONF-950402--
- Country of Publication:
- United States
- Language:
- English
Similar Records
Comparison of monolith-supported metals for the direct oxidation of methane of syngas
Catalyst and process development for hydrogen preparation from future fuel cell feedstocks. Quarterly progress report, January 1, 1980-March 31, 1980. [Pt/Rh, Pd, Pt, Rh, Ni/Rh, Rh/Re, Ni]