skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Towards Batched Linear Solvers on Accelerated Hardware Platforms

Book ·

As hardware evolves, an increasingly effective approach to develop energy efficient, high-performance solvers, is to design them to work on many small and independent problems. Indeed, many applications already need this functionality, especially for GPUs, which are known to be currently about four to five times more energy efficient than multicore CPUs for every floating-point operation. In this paper, we describe the development of the main one-sided factorizations: LU, QR, and Cholesky; that are needed for a set of small dense matrices to work in parallel. We refer to such algorithms as batched factorizations. Our approach is based on representing the algorithms as a sequence of batched BLAS routines for GPU-contained execution. Note that this is similar in functionality to the LAPACK and the hybrid MAGMA algorithms for large-matrix factorizations. But it is different from a straightforward approach, whereby each of GPU's symmetric multiprocessors factorizes a single problem at a time. We illustrate how our performance analysis together with the profiling and tracing tools guided the development of batched factorizations to achieve up to 2-fold speedup and 3-fold better energy efficiency compared to our highly optimized batched CPU implementations based on the MKL library on a two-sockets, Intel Sandy Bridge server. Compared to a batched LU factorization featured in the NVIDIA's CUBLAS library for GPUs, we achieves up to 2.5-fold speedup on the K40 GPU.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1261494
Country of Publication:
United States
Language:
English

Similar Records

Batched matrix computations on hardware accelerators based on GPUs
Journal Article · Mon Feb 09 00:00:00 EST 2015 · International Journal of High Performance Computing Applications · OSTI ID:1261494

A Framework for Batched and GPU-Resident Factorization Algorithms Applied to Block Householder Transformations
Book · Thu Jan 01 00:00:00 EST 2015 · OSTI ID:1261494

A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Journal Article · Wed Oct 01 00:00:00 EDT 2014 · Concurrency and Computation. Practice and Experience · OSTI ID:1261494

Related Subjects