Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene
Journal Article
·
· Nature Nanotechnology
Bernal (AB)-stacked bilayer graphene (BLG) is a semiconductor whose bandgap can be tuned by a transverse electric field, making it a unique material for a number of electronic and photonic devices. A scalable approach to synthesize high-quality BLG is therefore critical, which requires minimal crystalline defects in both graphene layers and maximal area of Bernal stacking, which is necessary for bandgap tunability. Here we demonstrate that in an oxygen-activated chemical vapour deposition (CVD) process, half-millimetre size, Bernal-stacked BLG single crystals can be synthesized on Cu. Besides the traditional 'surface-limited' growth mechanism for SLG (1st layer), we discovered new microscopic steps governing the growth of the 2nd graphene layer below the 1st layer as the diffusion of carbon atoms through the Cu bulk after complete dehydrogenation of hydrocarbon molecules on the Cu surface, which does not occur in the absence of oxygen. Moreover, we found that the efficient diffusion of the carbon atoms present at the interface between Cu and the 1st graphene layer further facilitates growth of large domains of the 2nd layer. The CVD BLG has superior electrical quality, with a device on/off ratio greater than 104, and a tunable bandgap up to -100 meV at a displacement field of 0.9 V nm-1.
- Research Organization:
- National Renewable Energy Laboratory (NREL), Golden, CO (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- DOE Contract Number:
- AC36-08GO28308
- OSTI ID:
- 1253273
- Report Number(s):
- NREL/JA-5K00-65891; MainId:12287; UUID:0e574a12-78cf-e511-97db-d89d67132a6d; MainAdminID:767
- Journal Information:
- Nature Nanotechnology, Journal Name: Nature Nanotechnology Journal Issue: 5 Vol. 11; ISSN 1748-3387
- Publisher:
- Nature Publishing Group
- Country of Publication:
- United States
- Language:
- English
Similar Records
Crystalline Bilayer Graphene with Preferential Stacking from Ni–Cu Gradient Alloy
A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition
Optical Determination of Gate--Tunable Bandgap in Bilayer Graphene
Journal Article
·
Mon Mar 05 23:00:00 EST 2018
· ACS Nano
·
OSTI ID:1488924
A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition
Journal Article
·
Wed Jan 06 23:00:00 EST 2016
· Journal of Applied Physics
·
OSTI ID:22494872
Optical Determination of Gate--Tunable Bandgap in Bilayer Graphene
Journal Article
·
Tue Aug 11 00:00:00 EDT 2009
· Nature
·
OSTI ID:974550