Fluorescent lighting with aluminum nitride phosphors
A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC52-07NA27344
- Assignee:
- Lawrence Livermore National Security, LLC (Livermore, CA) General Electric Company (Schenectady, NY)
- Patent Number(s):
- 9,337,010
- Application Number:
- 14/840,839
- OSTI ID:
- 1252202
- Country of Publication:
- United States
- Language:
- English
Similar Records
Rare Earths; The Fraternal Fifteen (Rev.)
Rare Earth Element Concentrations from Wells at the Don A. Campbell Geothermal Plant, Nevada