Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Mesoscale Modeling of the Inland Nocturnal Sea Breeze

Conference ·
OSTI ID:125178

The mesoscale sea breeze has important consequences for many densely populated coastal environments, including convection initiation, aviation safety, and air quality. The sea breeze characteristics before and after sunset are markedly different (Sha et al 1993). A gravity current will form during the early afternoon due to the relatively large density difference between the land and sea air. During the afternoon, as the lighter land air is forced upward by the cooler dense sea air, Kelvin-Helmholtz (KH) billows often form along the interface, as well as thin regions of turbulent rising air, playing a crucial role in the mixing process (Simpson 1994). After sunset, the frontal zone expands as longwave radiation cools the surface which reduces vertical mixing. With further inland penetration, the sea breeze encounters increasingly stable air near the ground, resulting in the formation of an undular bore or cutoff vortex (Sha et al. 1993). It has been demonstrated that large-scale winds have profound effects on both the strength and inland penetration of sea breezes (Arritt 1993, among others). In general, offshore flow results in a sharper frontal discontinuity and less inland penetration, while onshore flow produces weaker fronts which may penetrate further inland. Most sea breeze studies have focused on its more dramatic daytime properties near the coast whereas inland nocturnal sea breezes have received much less attention. The reason for this neglect is a lack of good observational data in the boundary layer. Sha et al. (1991) note the necessity of high resolution data to capture the finer structures of the sea breeze. A unique opportunity to examine the nocturnal sea breeze became available at the Savannah River Site (SRS, located roughly 150 km from the Atlantic Ocean in southwestern South Carolina) during the Stable Boundary Layer Experiment (STABLE), 12-17 April, 1988. (Abstract Truncated)

Research Organization:
Westinghouse Savannah River Co., Aiken, SC (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC09-89SR18035
OSTI ID:
125178
Report Number(s):
WSRC-MS--95-0368; CONF-960139--1; ON: DE96060009
Country of Publication:
United States
Language:
English