skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An evaluation of correlation-consistent basis sets in calculating the structure and energetics of (H{sub 3}Si){sub 2}O, H{sub 3}SiOH, and H{sub 3}SiO{sup {minus}}

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.470169· OSTI ID:124794
 [1];  [2]
  1. Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, Richland, Washington 99352 (United States)
  2. Cray Research Inc., Eagan, Minnesota 55121 (United States)

We studied the structure of disiloxane (H{sub 3}Si--O--SiH{sub 3}), silanol (H{sub 3}Si--OH), and the silanol anion (H{sub 3}Si--O{sup {minus}}) with {ital ab} {ital initio} molecular orbital theory and the correlation consistent polarized basis sets of Dunning and co-workers. We present results for the correlation consistent polarized valence double zeta (cc-pVDZ), triple zeta (cc-pVTZ), and quadruple zeta [cc-pVQZ(-{ital g})] basis sets. Optimized geometries and energies are given at both the restricted Hartree--Fock (RHF) level and with the inclusion of electron correlation by second order Moller--Plesset perturbation theory (MP2). The correlation consistent basis sets provide a systematic expansion of the orbital basis set, with each set of additional functions adding a similar contribution to the correlation energy. We find that the calculated molecular properties show exponential convergence with increasing basis set size. These calculations answer long-standing questions regarding the structure and barrier to linearization of disiloxane. Results at the highest level of theory [MP2/cc-pVQZ(-{ital g})] for disiloxane gave a Si--O--Si bond angle of 147.0{degree}, a Si--O bond length of 1.641 A, and a barrier to linearization of 0.4 kcal/mol. All of these values are in excellent agreement with experimental results. Similar calculations for silanol gave a Si--O bond length of 1.655 A, an O--H bond of 0.955 A, and a Si--O--H angle of 117.9{degree}. The MP2/cc-pVQZ(-{ital g}) deprotonation energy ({Delta}{ital E}{sup 0}) for silanol, calculated as the energy difference between silanol and its anion, is {minus}366.6 kcal/mol. The effects of electron correlation at the MP4 level are studied in all three molecules using the cc-pVDZ and cc-pVTZ basis sets. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
124794
Journal Information:
Journal of Chemical Physics, Vol. 103, Issue 18; Other Information: PBD: 8 Nov 1995
Country of Publication:
United States
Language:
English