Machine learning strategies for systems with invariance properties
Journal Article
·
· Journal of Computational Physics
- Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Here, in many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds-Averaged Navier-Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high-performance computing has led to a growing availability of high-fidelity simulation data, which open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first , a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance with significantly reduced computational training costs.
- Research Organization:
- Sandia National Laboratories (SNL-CA), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC04-94AL85000
- OSTI ID:
- 1247662
- Alternate ID(s):
- OSTI ID: 1347630
- Report Number(s):
- SAND--2016-0249J; 618374
- Journal Information:
- Journal of Computational Physics, Journal Name: Journal of Computational Physics Journal Issue: C Vol. 318; ISSN 0021-9991
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Physics-Informed Machine Learning for Predictive Turbulence Modeling: Towards a Complete Framework
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
RINO: Renormalization Group Invariance with No Labels
Technical Report
·
Sat Sep 17 00:00:00 EDT 2016
·
OSTI ID:1562229
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
Journal Article
·
Mon Oct 17 20:00:00 EDT 2016
· Journal of Fluid Mechanics
·
OSTI ID:1333570
RINO: Renormalization Group Invariance with No Labels
Conference
·
Tue Sep 09 00:00:00 EDT 2025
· No journal information
·
OSTI ID:3003666